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ABSTRACT: For Landau-quantized graphene, featuring an
energy spectrum consisting of nonequidistant Landau levels,
theory predicts a giant resonantly enhanced optical non-
linearity. We verify the nonlinearity in a time-integrated
degenerate four-wave mixing (FWM) experiment in the mid-
infrared spectral range, involving the Landau levels LL−1, LL0
and LL1. A rapid dephasing of the optically induced
microscopic polarization on a time scale shorter than the
pulse duration (∼4 ps) is observed, while a complementary
pump−probe experiment under the same experimental
conditions reveals a much longer lifetime of the induced population. The FWM signal shows the expected field dependence
with respect to lowest order perturbation theory for low fields. Saturation sets in for fields above ∼6 kV/cm. Furthermore, the
resonant behavior and the order of magnitude of the third-order susceptibility are in agreement with our theoretical calculations.

KEYWORDS: Graphene, four-wave mixing, nonlinear optics, Landau-quantization

Graphene is a two-dimensional material with a gapless
linear band structure in the vicinity of two Dirac points. It

possesses unique mechanical, electrical, and optical properties,
which have led to a high interest in a broad range of fields. An
example for those outstanding features are the highly nonlinear
optical properties of graphene in a wide spectral range from
terahertz (THz) frequencies to visible light. The third-order
nonlinear optical response has been investigated theoretically,
both on a semiclassical and on a fully quantum mechanical
basis.1−7 In the latter case, in particular the four-wave mixing
(FWM) process is addressed. Experimentally FWM signals
have been observed in the near-infrared spectral range7−12 and
third-order nonlinear susceptibilities have been found to be in
the order of χ(3) ∼ 10−25−10−23 m3/V2. At THz frequencies
however, only pump−probe signals, but no FWM signals, have
been found.13 When a magnetic field is applied perpendicular
to the graphene layer the linear dispersion of graphene breaks
up into a series of nonequidistant Landau levels.14 This offers
the possibility to resonantly enhance the nonlinear-optical
response and to tune the resonance frequency by adjusting the
strength of the magnetic field. Recently, a giant nonlinear-
optical response (χ(3) ∼ 10−19 m3/V2) has been predicted for
Landau-quantized graphene.15,16 In this Letter, we present the
first experimental investigation of this effect by studying
transient, degenerate FWM. To this end, the LL−1 → LL0

and LL0 → LL1 transitions are excited resonantly with radiation
at 19 THz (78 meV). The experimental findings are in good
agreement with our theoretical calculations based on the
density-matrix formalism.
A multilayer epitaxial graphene sample (∼50 layers)

produced by thermal decomposition of SiC on the C-face of
4H-SiC is used in the experiments.17 Although the amount of
graphene layers formed on the SiC substrate is large, the
different layers behave like single layer graphene, because they
are electronically decoupled.18,19 The Fermi level in the
different graphene layers is determined by polarization doping
of the substrate.20 The majority of layers is slightly n-doped and
only the layers at the interface to SiC exhibit a stronger
doping21 and are therefore transparent at the used photon
energy of 78 meV and a magnetic field of 4.5 T. The sample is
kept in a split-coil superconducting magneto-cryostat at a
temperature of 10 K in a cold helium gas atmosphere. The
scheme of the experimental setup is depicted in Figure 1. The
laser pulses from the free-electron laser FELBE are split into
two separate paths and are focused with an off-axis parabolic
mirror onto the sample inside the magneto-cryostat. A time
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delay Δt between the two pulses can be controlled with a
motorized delay stage (not shown). The beams in direction k1⃗,
k2⃗ and the FWM signal in direction 2k2⃗−k1⃗ are simultaneously
collimated by a second parabolic mirror. A movable aperture is
used to select which beam is detected by the nitrogen cooled
mercury−cadmium−telluride (MCT) detector. Both incident
beams are modulated by a dual-slot optical chopper and the
signals are detected by a lock-in amplifier at the sum of the
modulation frequencies for both beams. This enables one to
suppress a time-independent background caused by stray light.
If the sample is brought into a magnetic field of around 4.5 T

with a direction perpendicular to the surface, the band structure
of graphene breaks up into a system of Landau levels and the
LL−1 → LL0 and LL0 → LL1 transitions become resonant with
the photon energy of 78 meV. For the almost intrinsic
graphene layers LL−1 is fully occupied, LL0 close to half filling
and LL1 is completely empty. In detail, we expect the filling of
the zeroth Landau-level to be in the order of 0.52 at this
magnetic field (corresponding to a carrier concentration of 8 ×
109 cm−2 at zero field22). In this work, both incident pulses are
linearly polarized in the same direction. Thus, the excitation of
both transitions is possible as indicated in Figure 2a. The
transient change in transmission ΔT/T0 of the sample due to
strong optical excitation is depicted in Figure 2b. For this kind
of measurement, the movable aperture is set to transmit the k1⃗
beam and the transient change in transmission of this beam
caused by the absorption of photons from the k2⃗ beam is
recorded. The pump−probe signal features a fast decay and a
slower component in the order of several hundreds of
picoseconds. Recent studies already gave first insight into the
population dynamics of this system.23−26 In particular, a rapid
(faster than pulse duration of ∼4 ps) depopulation of an
optically pumped level via Auger scattering has been
observed.26 This Coulomb process leads to a fast thermalization
of electrons. The slower time scale of the decay is attributed to
cooling of the electronic system via phonon scattering.
While the pump−probe signal corresponds mostly to Pauli

blocking and reveals the dynamics of the excited population,
the FWM signal is sensitive to the induced polarization in the
sample. The decay of the microscopic polarization is governed
both by the relaxation of the population and by pure dephasing
processes. In our FWM experiment, the beam in direction k1⃗
induces a polarization in the sample. The k2⃗ beam, arriving after
the delay time Δt, interferes with the remnant k1⃗ polarization

and creates a polarization grating with the wave vector k2⃗−k1⃗.
The second part of the k2⃗ beam gets diffracted by this grating in
the direction 2k2⃗−k1⃗. Thus, the decay time of the FWM signal
is defined by the polarization dephasing processes and not by
the population decay. Figure 2c depicts the FWM signal at the
very same experimental conditions as for the pump−probe
signal in Figure 2b. Comparing both types of signals one can
see some clear differences. The FWM signal is basically
symmetric apart from a small artifact, namely a baseline offset at
negative delay times, which stems from pump−probe signals
that are scattered as stray light into the detector. Note that the
time delay relevant for the FWM signal is inverted with respect
to the pump−probe signal.27 The FWM signal is only observed
during the temporal overlap of the pulses, indicating that the
dephasing time is considerably shorter than the temporal
resolution of our experiment set by the pulse duration of
around ∼4 ps. This result, together with the previous detailed
study of the population dynamics,26 suggests that Auger
processes within the LL−1, LL0, and LL1 subset of Landau
levels cause a rapid dephasing of the microscopic polarization.
Next, we investigate the dependence of the FWM process on

the electric fields of the beams in k1⃗ and k2⃗ direction. The
electric field of the generated FWM signal can be estimated
from the induced third-order polarization, which depends on
the third-order nonlinear surface (2D) susceptibility χ(3) (in SI
units) and is given by

ω χ| ⃗ | ≃ | ⃗ ⃗ |E
c

E k E k
2

( ) ( )FWM
(3) 2

2 1 (1)

Here ω is the frequency, E(k1⃗) and E(k2⃗) the fields of the
incident beams, and c is the velocity of light. The surface
susceptibility χ(3) for this process is a function of the magnetic
field and the photon energy itself. We will have a closer look on
this in the next section. Equation 1 indicates that the FWM
field scales linearly with the field of the beam in direction k1⃗ and
quadratically with the field of the beam in direction k2⃗. Thus, if
the field of both beams is tuned simultaneously, the FWM field
should scale cubically. For a variety of different field

Figure 1. Experimental setup. The movable aperture (MA) is used to
select the FWM signal in direction 2k2⃗−k1⃗ or to measure a pump−
probe signal in k1⃗ direction with the MCT detector.

Figure 2. (a) The magnetic field of 4.5 T leads to a Landau-
quantization in the graphene sample, whereas the transition from LL−1
(LL0) to LL0 (LL1) is resonant to the photon energy of 78 meV. (b)
The transient change in population is recorded by a degenerate
pump−probe experiment, measuring the transient change of trans-
mission of k1⃗ (field: 6 kV/cm) caused by the absorption of k2⃗ (field: 12
kV/cm). (c) The microscopic polarization is probed by detecting the
FWM signal 2k2⃗−k1⃗ at the same incident fields. The shaded areas show
the autocorrelation of the laser pulses calculated from spectra.
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combinations of the two incident beams, FWM transients were
recorded and the maxima of the transients were extracted. The
incident peak fields were determined from the measured power,
spot size and pulse duration. To determine EFWM one has to
consider the losses at the movable aperture and the calibration
of the MCT detector additionally. Note that the inaccuracy of
this procedure has no influence on the determined scaling
behavior of the FWM field with respect to the incident fields.
The quantitative values of the FWM field, however, are
expected to be accurate only within a factor of 3, since the
determined FWM intensities are estimated to be accurate
within 1 order of magnitude. The FWM peak fields are plotted
in Figure 3 as a function of the peak field of the beam in k2⃗

direction. Figure 3a shows the field dependence when the field
of the k1⃗ beam is kept constant at 6 kV/cm (corresponding to a
fluence of ∼0.2 μJ/cm2) and only the field of the k2⃗ beam is
varied. Linear and quadratic power laws are indicated by the
dotted red and blue dashed line, respectively. The three lowest
data points are in agreement with a quadratic dependence.
Note that in the case of a pump−probe signal one would only
expect a linear scaling of the signal. This, together with the
different temporal shapes of the signals (see Figure 2), allows
one to clearly identify the FWM signal and distinguish it from
potential stray pump−probe signals. Nevertheless, a clear
saturation is noticeable in the measured field regime. A deeper
analysis of saturation effects is beyond the scope of this work.
However, in ref 16 saturation fields are calculated for FWM
processes with a different level scheme in Landau-quantized
graphene under continuous excitation. Despite the differences
of the processes evaluated in this work and in ref 16, the

reported saturation behavior can serve as an estimation for the
order of magnitude of the saturation field. For a magnetic field
of 4.5 T and a dephasing time of 190 fs (this value is discussed
later in this Letter), the saturation field is in the order of 4 kV/
cm, which is consistent with the experiment, where a deviation
from the square root dependence is observed for fields higher
than 6 kV/cm. Pump−probe measurements under comparable
conditions feature a saturation at comparable pumping fields,
indicating that the observed saturation in the FWM experiment
might be explained due to band filling.
In accord with the consideration that two photons of the

beam in k2⃗ direction interact with one photon of the beam in k1⃗
direction, it is reasonable to choose a ratio of the two fields of
E2/E1 ≈ 2 . The strength of the FWM signal for this constant
ratio is depicted Figure 3b. Again the straight lines represent
different power laws. The data points do not follow the green
line that represents the expected cubic dependence of this case.
However, the dependence is found to be superquadratic for the
low fields. The observed saturation is not surprising. From
Figure 3a, one can see that at the measured fields already the
parabolic dependence on E2 saturates. Saturation naturally
occurs faster if both fields are varied. It was not possible to
achieve sufficient signal-to-noise ratio at lower fields to clearly
demonstrate the cubic dependence.
In the following, the resonant behavior of the FWM signal is

studied by measuring transients at different magnetic fields,
while keeping the photon energy fixed. In Figure 4 the peak

FWM intensities are plotted on a B -scale, that is, a scale that
is linear in the energy of the optical transition LL−1 → LL0 and
LL0 → LL1.

14 Additionally the linear absorption measured by
Fourier transform spectroscopy, as described by Orlita et al. in
ref 28, is shown. One can clearly see that the resonance of the
χ(3) process is much narrower as compared to the linear
absorption. As mentioned before, the dependence of the FWM
signal on the magnetic field stems from the nonlinear

Figure 3. Saturation behavior of the FWM signal. (a) The field of
beam one is kept at 6 kV/cm, while the field from beam two is varied.
(b) Both fields are varied while keeping a constant ratio of √2.

Figure 4. Linear absorption (red triangles) and maxima of FWM
mixing signals (blue squares) for different magnetic fields. The field of
beam two is 12 kV/cm and beam one 5.3 kV/cm. The blue line shows
the calculated magnetic field dependency of the χ(3) process. The inset
shows a Lorentzian fit to the linear absorption spectra at 4.5 T to
determine the line broadening.
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susceptibility χ(3). We derive an expression for χ(3) using the
density-matrix formalism similarly to refs 15 and 16. Here we
only consider transitions that are close to resonance with the
pump fields. By using this approximation, the linear and
second-order density matrix elements are solely determined by
the pump field E2, while the field E1 only enters the third-order
density matrix elements. For our specific case, that is, two
incident fields with the same linear polarization, and under the
assumption of equal line broadening factors for the different
transitions, the surface susceptibility can be written as

χ ω
π ωω ω γ ω

ω γ ω
ρ ρ ρ ρ

ω γ ω

⃗ − ⃗ =
ℏ ϵ + −

×
+ −

− − −
+ −

−

k k
l

e v i
i

i i

( , 2 )
1

2

1
2(2 2 )

( ) ( )

(3)
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0

4
f
4

c
3

c

c

1 0 0 1

c (2)

Here vf is the Fermi velocity in graphene, ω =
ℏ

v eB
c f

2 is the

resonance frequency, = ℏl
eBc the magnetic length, ρi is the

occupation of the LLi and γ is the line broadening. The
numerator of the last fraction is in our case approximately
−0.04, because of the small doping. For intrinsic graphene χ(3)

would vanish in this configuration since contributions from the
transitions LL−1 → LL0 and LL0 → LL1 cancel each other. This
reflects electron−hole symmetry of intrinsic graphene. The line
broadening for the calculation was taken from the linear
absorption measurement by applying a Lorentzian fit to the
absorption line (see inset in Figure 4), which yielded γ ≃ 3.5
meV. Note that this corresponds to a total dephasing time of τ
= ℏ/γ = 190 fs, assuming a homogeneously broadened line.
The fact that the decay of the FWM signal was faster than the
pulse duration of 4 ps is consistent with this number. The
experimental FWM resonance appears to be slightly broader
than the calculated one (see Figure 4). This may have two
possible reasons. First, eq 2 does not account for saturation
effects. Taking them into account will broaden the calculated
peak. Second, in fact, both Landau-level populations and
relaxation rates in eq 2 can be viewed as time-dependent during
the pulse. An increasing field amplitude of the incident pulse
leads to an increase in the amount of nonequilibrium carriers
and an accelerated Auger recombination, which has a strongly
nonlinear dependence on the nonequilibrium carrier density.
These effects contribute to the saturation of the FWM signal
strength and an enhanced broadening of the FWM resonance.
Furthermore, far away from the resonance the effect of
scattered stray light is more dominant, as the pump−probe
signal possesses a broader resonance. Consequently, the
strength of the experimental FWM signal may be overestimated
in the nearly off-resonant case.
It is instructive to compare the dephasing time estimated

from the broadening of the LLs to scattering times discussed in
literature. The latter are primarily momentum relaxation times
obtained from transport measurements. In the simplest
approach, the momentum relaxation time τm is related to the
carrier mobility by the expression29 μ = eτmvf

2/Ef. From this
expression, relaxation times of 4 and 50 fs can be extracted from
quantum Hall effect measurements on monolayer graphene on
the Si face of SiC and monolayer quasi-free-standing graphene
prepared by hydrogen intercalation on the Si face of SiC,
respectively.30,31 It has been pointed out that the momentum
relaxation time can differ, depending on the predominant

scattering mechanism, by a factor of 1−5 from the time
constant related to the quantum level broadening.32 Typical
values for the level broadening of exfoliated graphene on SiO2

are in the range from 30−50 fs,32 approximately three times
higher values are found in graphene on hBN.33 The comparably
high value of 190 fs for our sample indicates the high structural
quality. Finally we note that extremely pure graphene on
graphite layers exhibit dephasing times of up to 20 ps.34

Finally, we discuss the strength of the χ(3)-process. According
to eq 2, one layer of graphene with ρ0 = 0.52 in a magnetic field
resonant to the photon energy features a surface susceptibility
of 4.9 × 10−20 m3/V2. This corresponds to a bulk susceptibility
of 1.6 × 10−10 m2/V2, assuming a layer thickness of 0.3 nm. For
comparison with the experiment, it is reasonable to select one
of the lower excitation data points from Figure 3a, where the
saturation is negligible. From the second point, where the
incoming fields are set to E2 = 4.6 kV/cm and E1 = 5.9 kV/cm
and EFWM = 0.023 kV/cm is measured, we derive χ(3) ∼ 9.2 ×
10−20 m3/V2 using eq 1. Note that the experimental value is not
the χ(3) for one single layer of graphene, as our sample consists
of roughly 50 layers. Considering the uncertainty in the
experimental determination of EFWM, experiment and theory are
in reasonable agreement. For doped graphene, where the zeroth
Landau-level is either completely filled or empty at a magnetic
field of several Tesla, a much higher susceptibility is expected,
as the numerator in eq 2 will be 25 times higher (i.e., χ(3) ∼
10−18 m3/V2). Considering the small thickness of graphene, this
is in fact a strong nonlinearity. The surface susceptibility of
Landau-quantized graphene is comparable to the value
observed for intersubband transitions in GaAs quantum wells
with much larger thickness and 2D electron density. For
example, the intersubband transition at 124 meV in a GaAs/
AlGaAs superlattice results in χ(3) ∼ 1.3 × 10−18 m3/V2, which
is 3 orders of magnitude larger than the intraband nonlinearity
due to nonparabolicity of the wells.35 Coupled-quantum-well
structures based on AlInAs/GaInAs are demonstrated with a
susceptibility of χ(3) ∼ 1.4 × 10−20 m3/V2 measured by third-
harmonic generation.36 Even higher third-order nonlinearities
χ(3) ∼ 5 × 10−17 m3/V2 are predicted in the THz range by
utilizing impurity transitions in GaAs quantum well37 but have
not yet been verified experimentally.
In summary, the proposed large third-order nonlinearity in

Landau-quantized graphene is experimentally demonstrated for
the first time. The order of χ(3), the resonance behavior, and the
field dependencies are in good agreement with our theoretical
predictions. Landau-quantized graphene represents a system
with a strong optical nonlinearity and offers spectral tunability
by variation of the magnetic field. These properties are
attractive for a variety of mid-infrared nonlinear optical
applications such as frequency multiplication, parametric
generation, and sum-frequency generation.
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