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Abstract
Herein, we report the results of directly synthesizing wafer-scale graphene on silicon dioxide surface using the photoresist based and Cu and Cu/Ni 
thin-film coating-assisted chemical vapor deposition method. A systematical investigation of the effects of growth condition, such as temperature, 
time, and metal catalyst layer of Cu and Cu/Ni, on the growth of graphene have been conducted. Multi-layer graphene films are prone to be grown 
using the Cu/Ni capping layer, while monolayer graphene films are produced using the Cu capping layer. The results demonstrate that such simple 
method using solid phase photoresist as carbon feedstock can provide a practical route to realize large-scale and mass production of monolayer 
graphene on dielectric substrate no need of conventional transfer procedure. It sheds a light on future graphene electronic industry.

Introduction
The thin-film graphitic material with graphene like structure 
was known as early as the 1960s,[1] and several theoretical 
works already predicted the electronic structure of single-layer 
hexagonal carbon layer;[2–4] however, until 2004, the experi-
mental demonstrations of its extraordinary electronic properties 
were reported.[5–7] Ever since and up to now, the research on 
graphene has always been considered as a hot topic in seek-
ing new material candidate for the next generation integrated 
circuit due to its extraordinary physical and transport prop-
erties.[8–12] In general, mainstream graphene growth methods 
including mechanical exfoliation,[5] epitaxial graphene growth 
on SiC,[13] oxidation reduction from graphene  oxide[14], and 
chemical vapor deposition using carbon-enriched materials 
as feedstock.[15–18] Among these methods, transition metal 
substrate-based, such as Cu and Ni, CVD methods have been 
viewed as the most promising one for preparing large-scale 
single-crystal industry-grade graphene due to its simplicity and 
low cost.[17–21] However, such graphene must be transferred 
onto insulating substrates in order to be applied for making 
useful electronic devices, which inevitably introduces large 
amounts of contaminations and defects.[22] Therefore, devel-
oping a relevant approach that can direct growth graphene on 
insulating substrate is pressingly needed due to its great poten-
tial applications.[23]

Recently, much efforts have been devoted to the direct 
graphene growth on insulating substrates.[24–27] However, the 
high-quality, uniform, and large-area graphene film growth 
is still extremely challenging.[28–31] As one of them, by spin-
coating polymer on an insulating substrate as the carbon source 

combined with the atop deposited thin sacrificial metal film 
was considered as the simplest and effective way for graphene 
growth.[32,33] However, up to now, most of studies have only 
focused on Ni metal as the capping layer,[34–40] and a very few 
on Cu or Cu/Ni as the capping layer.[41] Considering the vast 
progress of Cu foil based large-area monolayer single-crystal 
CVD graphene growth recently,[42–46] a systematically study of 
Cu as topping layer in such methods is necessary.

Here, we present a systematically exploration of the cor-
relation between the growth temperature, time, and related 
parameters of toping Cu/CuNi and the quality of grown gra-
phene, aiming for large-area graphene films directly grown on 
insulating  SiO2 substrate. The results show that the optimized 
method greatly reduces the usage of metal comparing to the 
traditional CVD and completely eliminate the graphene transfer 
process, which provides a promising candidate for high-quality 
graphene mass production in industrial.

Experimental section
Synthesis of graphene on  SiO2 substrate
The photoresist of AZ5214E was used as the carbon source 
and the highly n-doped (ρ 0.01–0.05 Ω cm) Si (100) wafer 
with a 285-nm  SiO2 layer was used substrate. The substrate 
was purchased from Hefei Kejing Materials Technology Co., 
LTD. (Hefei, China). Before graphene growth, the substrates 
were cut into small pieces of 10 × 10 mm first and supersoni-
cally cleaned by acetone, ethanol, and deionized water sequen-
tially about 15 min for each step and then dried with  N2 gas. 
Photoresist AZ5214E was dissolved in methoxy-propyl acetate 
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(PGMEA) with a solid content of 28.3% before it was spin 
coated onto the substrates. The thickness of coating photoresist 
layer can be finely tuned by the solution concentration, spin-
coating speed and time, consequently the total amount of the 
introduced carbon feedstock for graphene growth. The thick-
ness of the photoresist of 1.4 μm was reached with spin-coating 
speed of 500 rpm for 5 s and 4000 rpm for 45 s. With the same 
parameters, for high-quality monolayer graphene growth, the 
receipt of photoresist is to dilute a drop of photoresist with 
20 ml isopropanol, whereas the thickness of photoresist will be 
reduced to about 10 nm. Subsequently, Cu and Cu/Ni films are 
coated on photoresist layer through electron beam evaporation 
to form the sandwich structural sample of Cu/AZ5214E/SiO2 
or Cu/Ni/AZ5214E/SiO2. For graphene growth, those prepared 
samples will be put into a corundum boat and inserted into a 
horizontal CVD furnace with a quartz tube with dimension of 
1200 mm × Φ 60 mm. The explored ranges of growth param-
eters are: temperature from 900°C to 1100°C and time from 
1 to 60 min with constant Ar/H2 flow at the rate of 50 and 
10 sccm, respectively. Finally, the metal film is etched away 
using  FeCl3 solution.

General characterization
In order to evaluate the quality of the prepared graphene, its 
surface morphology was characterized by optical microscope 
(Leica DM2700), atomic force microscope (AFM, Park Sys-
tem NX10) in non-contact mode, and scanning electron micro-
scope (SEM, Hitachi SU3500) under 5-kV beam energy with 
a secondary electron detector. The thickness and quality were 
characterized using Raman spectrometer with wavelength of 
wavelength of 532 nm and beam spot diameter of 1 μm and 
power of 5 mW (Fig. 1).

Results and discussion
In order to explore the influence of thickness of the deposited 
Cu film on the grown graphene, a series of thickness have been 
investigated, including 50 nm, 100 nm, 150 nm, 200 nm, and 
250 nm, with Ar/H2 mixture 50/10 sccm and 15-min growth 
time at temperature of 1050°C. The Raman spectra reveal 
that the one with 50-nm Cu film yields the graphene with the 
highest quality,[47,48] as shown in Fig. S1. It is noticeable that 
Raman peaks of graphene were not observed on the top of Cu 
capping layer; it indicates that no graphene was formed on the 
top of Cu layer.

The CVD growth temperature is one of the most crucial 
factors on graphene nucleation and growth. The detailed 
investigations on its surface kinetics show that increas-
ing the reaction temperature accelerates the growth rate of 
the CVD graphene film.[49,50] It is believed that graphene 
nucleation density decreases at higher temperatures.[49,51,52] 
Earlier report suggested that rising the CVD process tem-
perature will lead to a decrease of the substrate’s surface 
roughness, which reduces the active sites for nucleation 
and improves the mobility of the active species.[51] Upon 

the rapid dehydrogenation rate of the hydrocarbon feed-
stock and/or to the improved probability that active carbon 
species have on the sufficient energy needed to surmount 
the energy barrier and attach to the surface for the growth 
of the graphene film which also favorite the increase of 
temperature.[50,53–55]

To investigate the temperature dependence of grown gra-
phene in this case, sequence of temperatures (T = 900°C, 
1000°C, 1050°C, and 1100°C) have been tested with the same 
thickness of Cu film (50 nm) and growth time of 15 min. The 
Raman spectra of resulted samples are shown as in Fig. 2(a). 
It shows only the strong D and G peaks when the growth 
temperature is 900°C, which indicates the formation of amor-
phous carbon but no graphene.[47] When the growth tempera-
ture is exceeded to 1000°C, D, G, and 2D peaks are observed 
at 1330  cm−1, 1580  cm−1, and 2700  cm−1, respectively. When 
it reaches 1050°C, the intensity ratio between 2D peak and G 
peak I2D/IG increases, indicating the less stacking of graphene 
layers and improved crystallinity.[48,56]  For T = 1100°C, a 
sharp and symmetric 2D peak with the FWHM of 31  cm−1, 
which indicates its high crystallinity and being monolayer. 
Hence, we conclude that the higher growth temperature will 
lead to higher quality of grown graphene; it also coincides 
with the optical and SEM microscopic images as shown in 
Fig. 2(c) and (d).

Figure 1.  Graphene growth at 1050°C with 15 min and the Ar/
H2 gases ratio is 50/10 sccm. (a), (b), and (c) show the SEM, 
AFM, and optical microscope images, graphene seeds can be 
clearly seen after etching the top Cu layer; (d) the Raman spectra 
of the synthesized graphene flakes at position 1 and position 
2 in the optical microscope image. D, G, and 2D Raman peaks 
are observed at the position of 1343  cm−1, 1580  cm−1, and 
2692  cm−1, respectively. The full width at half maximum (FWHM) 
of the 2D peak is about 64 cm.−1, and the intensity ratio of 2D and 
G peak for I2D/IG is 1.71. Compared with the previous reports, the 
grown graphene is considered as consist of approximately five 
layers.[14]
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Figure 2.  Temperature-dependent growth of the graphene films on  SiO2 substrate for 50-nm Cu capping layer catalyst. (a) Raman spectra 
of the directly grown graphene on  SiO2 under four various annealing temperatures of 900°C, 1000°C, 1050°C, and 1100°C with Ar/
H2 = 50/10 sccm for 15 min after etching the top Cu capping layer. (b) The FWHM of graphene 2D peaks as a function of the growth tem-
perature. (c) Optical microscope images and (d) SEM images of graphene structure corresponding to the Raman spectra.

Figure 3.  Time-dependent growth of the graphene films on  SiO2 substrate for 50-nm Cu capping layer catalyst. (a) Raman spectra of 
the directly grown graphene on  SiO2/Si with three different annealing times of 1 min, 5 min, and 15 min, respectively, at 1100°C with Ar/
H2 = 50/10 sccm after etching the top Cu capping layer. (b) Histogram of the trend of the FWHM of graphene 2D peaks and ID/IG with the 
growth time. (c) Optical microscope images and (d) SEM images of graphene structure corresponding to the Raman spectra.
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The effect of growth time was further studied, the meas-
ured Raman spectra of samples are shown in Fig. 3(a), and the 
processing time is 1 min, 5 min, and 15 min. The results show 
that only amorphous carbon was formed if the growth time 
is equal or less than 1 min, while the appearance of the weak 
2D peak after 5-min heating indicating the formation of gra-
phene but with poor crystallization evaluated by the rather high 
ID/IG = 1.79. When the growth time was extended, the sharp and 
symmetrical 2D peak in Raman with the FWHM of 2D peak of 
31  cm−1 signals and ID/IG = 0.67 indicate the realizing of mon-
olayer and high crystallinity graphene, as shown in Fig. 3(b). 
These results reveal that the graphitization process of photore-
sist can be divided into the two sequential steps of carboni-
zation and graphene formation in this CVD graphene growth 
procedure with the time extension.[37] It is worth noting that 
there are dark circular areas on every grown sample, and they 
are aggregated carbon particles along copper particles forming 
in the high temperature annealing process. With the increase 
of heating time, the amount of such rings gradually decreased 
due to the hydrogen etching effect on graphitic materials.[57]

As an alternative, Cu/Ni (50/200 nm) was employed to mak-
ing the metal thin film on the photoresist. It has lower graphene 
growth temperature at 1000°C than that using pure Cu capping 
layer. Figure 4(a) shows the Raman spectra of graphene directly 
grown on  SiO2 after etching off the Cu/Ni capping layer which 

were grown at temperatures of 900°C, 1000°C, 1050°C, and 
1100°C. Comparing to the one using Cu atop layer, the sizes of 
graphene flakes are smaller and most of them are multi-layer. 
Figure 4(b) shows the FWHM of the 2D peak obtained at dif-
ferent temperatures by Lorentz fitting. The smallest FWHM 
of 2D peak is about 80  cm−1 at 1000°C. The graphene qual-
ity also exhibits the similar temperature dependence, but the 
size of graphene does not significantly change. However, when 
temperature rises above to 1050 oC, the surface becomes dis-
ordered again.

Moreover, growing time dependence of graphene quality 
have been explored, Raman spectra and SEM characterizations 
demonstrate that the optimal time is about 30 min, as shown 
in Fig. S2. Further Raman mapping results verified the fairly 
good uniformity of grown graphene film as demonstrated in 
Fig. S3(e–f).

The mechanism of direct growth of graphene on insulating 
substrates using thin metal film as the capping layer and pho-
toresist as the carbon source have been proposed before.[38,58,59]  
It can be summarized as following: (1) Cu as the metal thin 
film serves as catalyst, the decomposition of PMMA occurs on 
the lower surface of copper with temperature rising, and sub-
sequently, the produced carbon will reassemble into graphene 
on both the top of insulator substrate and the lower surface 
of copper film in the cooling process. The graphene patches 

Figure 4.  Temperature-dependent growth of the graphene films on  SiO2 substrate for Cu/Ni (50/200 nm) capping layer catalyst. (a) Raman 
spectra of the directly grown graphene on  SiO2/Si after etching the top Cu/Ni layer at four different annealing temperatures of 1000°C, 
1050°C, and 1100°C with Ar/H2 = 50/10 sccm for 60 min after etching the top Cu/Ni capping layer. (b) The FWHM of graphene 2D peaks 
as a function of the growth temperature. (c) Optical microscope images and (d) SEM images of graphene structure corresponding to the 
Raman spectra.
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appear on the top surface of copper film is yielded from the 
precipitation of dissolved carbon of the  copper[38,60]; (2) in the 
case of nickel film, the nickel plays a role as an excellent solid 
state solution of carbon to dissolve the PMMA converted amor-
phous carbon with heating, followed by the crystallization of 
the carbon precipitation into graphene during the cooling pro-
cess.[61,62] (3) Regarding the Ni/Cu alloy film, the above two 
processes coexist, but with the fine tunability on the interaction 
between graphene and metal surfaces during different growth 
stages through doping metal surfaces with impurities or form-
ing metal alloys, consequently, realizing the precisely tuning 
of graphene growth.

Conclusion
Systematical investigations of direct growth of graphene on 
aninsulting substrate  (SiO2) have been conducted using CVD 
method with solid carbon feedstock. High coverage of gra-
phene films has been obtained with growth parameters of 50 nm 
thick Cu capping layer and 10-nm photoresist. It also shows the 
monolayer graphene growth preference of Cu capping layer 
and multi-layer of the Cu/Ni alloy capping layer. The simplic-
ity and effectiveness of such a direct solid phase photoresist to 
graphene conversion method demonstrate its applicability in 
future mass production of graphene and potential for practical 
device fabrication in industry.
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