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ABSTRACT

Reduced graphene oxide (rGO) has attracted an enormous interest as a

promising candidate for gas detection due to its large specific surface area,

abundant oxygen-containing functional groups and scalable production.

Although intense works have been conducted on rGO-based gas sensors, there

is still much room for improvement on both their response speed and thorough

exploration. In this work, thermal reduced graphene oxide (TRGO) is fabricated

by spinning dilute graphene oxide (GO) suspension combined with subsequent

in situ thermal reduction. TRGO sheets with size of more than 10 lm are uni-

formly dispersed and smoothly coated on Au interdigitated electrodes. The

ammonia sensing performance indicates that 250 �C-TRGO exhibits the shortest

response time of 11 s to 100-ppm ammonia. Besides, 130 �C-TRGO shows strong

response to low concentration ammonia with the calculated limit of detection

(LOD) of 0.9 ppm. After being exposed to air for 3 months, it still maintains

74.23% of its initial responsivity demonstrating the excellent long-term stability.

Moreover, the systematic investigation on the effect of annealing temperature to

the sensing performance of TRGO elaborates that with the increase in thermal

reduction temperature, the responsivity monotonically decreases while the

response time will decrease initially and then gradually increase after the

turning point of 250 �C. These results shed a light on developing TRGO-based

ammonia sensors (TBASs) for future practical applications.
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Introduction

Ammonia (NH3), a colorless and poisonous gas with

pungent odor, can cause serious irritation and injury to

human eyes and mucous membranes. Excessive

inhalation of ammonia leads to lung swelling, even

life-threatening in severe cases [1]. According to the

regulation of occupational safety and health adminis-

tration (OSHA), the exposure time to ammonia should

be restricted to 8 h and 15 min with a concentration of

25 and35 ppm, respectively [2].Additionally, as one of

themajor causes of haze, ammonium salt aerosol in the

atmosphere, which directly or indirectly resulted from

the ammonia involved reaction, contributes 17%of PM

2.5 [3]. Non-invasively early stage diagnosis of some

diseases can be achieved by detecting the concentra-

tion of ammonia in human exhaled gas [4]. Therefore,

rapid, accurate and stable detection of ammonia is

pressingly needed.

At present, commercial ammonia sensors are

mainly made of metal oxides, which have the

advantages of high sensitivity, easy integration and

low raw material cost [5, 6]. However, they always

require rather high operating temperature about

150–300 �C [7], which causes high-power consump-

tion and largely limits applying scenarios such as the

environment with explosives due to the potential

safety problem of high temperature [8–10].

As a two-dimensional material, graphene has

aroused much attention in gas sensing due to its

extremely high specific surface area (2630 m2g-1)

[11], superior room temperature conductivity and

mechanical stability. Moreover, when the Fermi level

is near the conical point, even a trace amount of

charge transferring from the gas molecules to gra-

phene leads to its significant change in conductance

due to its unique Dirac conical band structure

[12, 13], which gives it extremely high sensitivity in

low concentration gas detection. Additionally, the

very low electronic noise level of graphene further

ensures the effective measurement of weak sensing

signals [14]. Graphene is highly compatible with

modern micro and nano processing technology, and

it is easy to develop integrated gas sensor arrays with

high efficiency and reliability. However, since the

lack of dangling bonds on graphene, gas molecules

are generally adsorbed through van der Waals forces.

For this reason, the gas adsorption capacity and

selectivity of pristine graphene is rather weak [15]. In

contrast, plenty of oxygen-containing functional

groups and defects of rGO provide a large number of

active sites for gas adsorption. Additionally, the same

reasons also make rGO well dispersed in both

aqueous and organic solutions [16] and facile to be

tuned in sensing properties through surface func-

tionalization [17]. Combing with aforementioned

advantages and the low-cost massive production

capability, rGO has been considered as one of the

most promising materials for gas sensing that is

capable to be operated at room temperature.

In 2008, Robinson et al. [18] reported the first study

of rGO-based acetone vapor sensor, where the rGO

membrane was made through the hydrazine vapor

deoxidization. In the past decades, several GO

reduction methods have been developed, including

chemical [19, 20], thermal [21–23] and laser [24]

reduction, and most of them have been applied to

fabricate rGO-based ammonia sensors. In 2018, Li

et al. conducted thermal reduction of GO with dif-

ferent layers of self-assembly, in which the response

time of double-layer rGO to 50-ppm ammonia was

24 s [21]. Minitha et al. reported a systematic inves-

tigation on the ammonia sensing properties of

hydrazine hydrate reduced GO and further unveiled

the relation between reduction degree of GO and its

sensing performance. It showed that at 35% relative

humidity, the sample reduced for 15 h had the best

repeatability to 400-ppm ammonia with response

time of 30 s [19]. Later, Avik et al. [20] and

Kavinkumar et al. [24] also evidenced the depen-

dence of the ammonia sensing performance of rGO

on the degree of reduction.

Among the current methods for GO reduction,

almost all reducing agents, such as hydrazine, are

environmentally unfriendly, and normally, the

involved reactions are rather violent, which are

unavoidably introduce a non-negligible number of

holes and reaction residuals to the resulted graphene

[25]. In addition, with the gradual decreasing of

oxygen-containing functional groups, GO becomes

less hydrophilic and tends to agglomerate [26], which

is not conducive to maintain a large specific surface

area. Another method for GO reduction is laser

reduction; however, in order to reach expected

energy uniformity of laser spot, the required hard-

ware is rather costly; otherwise, the significant non-

consistency of fabricated material will be the most

serious hurdle in it applications [27].
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In contrast, thermal reduction of ultra-flat substrate

supported GO film not only maintains its large

specific surface area, but also realizes more uniform

reduction which can both effectively avoid the

introduction of defects through the appropriate con-

trol of heating temperature, and the method itself is

very economical [28]. However, current ammonia

sensors prepared by TRGO still suffer from long

response time and poor stability in low concentration

ammonia detection [29–31]. Therefore, a thorough

exploration on the relation between reduction tem-

perature and the sensing performance of TBASs is

highly desirable, which could be essential for gain

critical information to develop fast response and low-

power ammonia sensors for future practical

applications.

Herein, smooth and uniformly dispersed TRGO

sheets of large size are fabricated by spinning dilute

GO suspension combined with subsequent in situ

thermal reduction and used for rapid detection of

ammonia at room temperature. This solution is more

controllable and facile compared with the less

reproducible drop-casting method. The uniformly

dispersed GO sheets can be reduced into rGO with

well-controlled reducibility by in situ heating.

Therefore, it provides great advantages for develop-

ing TBASs. The effect of thermal reduction tempera-

ture on the content of defects, oxygen-containing

functional groups and the type of semiconductor of

TRGO is systematically investigated. Then, the rela-

tionship between these factors and the ammonia

sensing performance is explored and interpreted

further by relevant sensing mechanism. Conse-

quently, highly stable and low-cost miniature TBASs

are successfully fabricated that exhibit great sensing

properties to ammonia at room temperature.

Experimental

Materials

Natural graphite powder (- 325 meshes, 99.8%) was

purchased from Alfa Aesar. Analytical grade con-

centrated sulfuric acid (H2SO4, 98%) and hydrochlo-

ric acid (HCl, 36%) were ordered from Tianjin Yuanli

Chemical Co., Ltd. Sodium nitrate (NaNO3, 99%) was

acquired from Aladdin Co., Ltd. Analytical grade

potassium permanganate (KMnO4) was purchased

from Tianjin Fengchuan Chemical Co., Ltd.

Hydrogen peroxide (H2O2, 30%v/v) was obtained

from Tianjin Zhengcheng Chemical Co., Ltd. All

reagents were used as received without further

treatment. The testing gases were mixed by NH3 and

N2 with concentration of 99.999% bought from

Tianjin Ruixin Special Gases Institute and Tianjin

Liufang gas company, respectively.

Fabrication of TBASs

The details of GO synthesis are presented in the

Supporting Information. The SEM, XRD and AFM

characterizations of GO are shown in Figure S1. The

TBASs were fabricated on a SiO2/Si substrate as

schematically illustrated in Fig. 1. The procedure

started from the gate electrode patterning through

photolithography, followed by e-beam evaporation

deposition to fabricate the gate electrodes which was

made of 20-nm thick Cr and 20-nm thick Au

sequentially. Then, 15-nm thick alumina was depos-

ited as a dielectric layer by atomic layer deposition at

140 �C. Subsequently, interdigitated electrodes of

20-nm thick Cr and 20-nm thick Au with finger-width

and inter-finger spacing of about 10 and 7 lm,

respectively, were fabricated. Finally, 20-lL GO

dilute suspension (0.3 mg ml-1) was spun onto the

patterned channel area. These devices were treated in

a home-built annealing furnace at 130, 165, 200, 250,

300 and 350 �C in Ar atmosphere at 8.2 mbar for 2 h,

and the corresponding reduced GO was named as

130 �C-TRGO, 165 �C-TRGO, 200 �C-TRGO, 250 �C-
TRGO, 300 �C-TRGO and 350 �C-TRGO, respec-

tively. Before gas sensing test, the sensor was con-

nected by Al wires from the electrodes to the chip

carrier via silver paint.

Sensing performance characterization

The sensing tests were carried out on a home-built

gas measuring system as shown in Figure S2, more

detailed information can be found in ref.32. The

specific concentration of gas setting was realized by

tuning the flow ratio between the target gas and dry

N2 gas as a buffer. In the test, the experiment was

conducted by alternatively flowing the target gas and

dry N2 into the chamber for testing and purging,

respectively. Electrical signal acquisition was carried

out using a PC controlled Keithley 2450 Source Meter

though a homemade data acquisition program. In

order to mimic the real applying environment, the
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sensing tests were conducted under different

humidities, which was realized by changing the

humidity of the injected air. The responsivity of the

sensor is defined as follows:

Responsivity %ð Þ ¼ Rg � R0

R0
� 100 ð1Þ

where R0 and Rg are the measured resistances of the

sensor before and after the exposure to NH3,

respectively. The response time is defined as the time

taken for the sensor to achieve 60% of its maximum

resistance change [32, 33].

The calculated LOD of the sensor is defined as

follows:

LOD ¼ 3� RMSnoise
Sensitivity

ð2Þ

where RMSnoise is the noise level of the responsivity

baseline before exposure to NH3 [34]. The following

discussion of LOD in this paper refers to the calcu-

lated value.

Characterizations

Scanning electron microscopy (SEM, SU3500, Hitachi,

Japan) was used to image the morphology of GO and

TRGO films. The X-ray diffraction (XRD) data were

collected using a TD-3500 system (Dandong Tongda

Co. Ltd., China) with Cu Ka1 X-rays of 0.157418 nm

in the scattering range of 10�–80� with a rate of 2.4�/
min. The atomic force microscopy (AFM) image of

GO was obtained by a NX 10 system (Park Instru-

ment, South Korea). Raman spectroscopy was per-

formed on a Raman spectrometer (RTS-2, Titan

Electro-Optics Co. Ltd., Hong Kong) using a 532-nm

laser source. XPS spectra were collected with the

ESCALAB 250Xi XPS system with an Al Ka X-ray

source.

Results and discussion

Characterization of TRGO

Raman spectroscopy is one of the most important

measurements to characterize carbon materials. It has

been widely applied to investigate the electronic

structure, defects level and the functional group of

graphitic materials [35]. Figure 2a exhibits that the

Raman spectra of GO, 130 �C-TRGO and 350 �C-
TRGO, more for TRGO annealed at 130–350 �C are

shown in Figure S3. All of these spectra contain the

following two peaks: (1) The G band at 1590 cm-1 is

characteristic of sp2 hybridization of carbon atoms

and reflects the degree of graphitization of the TRGO.

This band is due to the in-plane stretching vibration

of carbon atoms. (2) The D band at 1350 cm-1 is

derived from the in-plane breathing vibration of the

six-membered aromatic carbon rings, which can

reflect the degree of disorder and defects of graphene

[27]. Figure 2b summarizes the ID/IG of TRGO

Figure 1 Schematic of fabrication process of TBASs.
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reduced at different temperatures. It shows that with

the reduction temperature increasing from 130 to

300 �C, the ID/IG decreases from 1.044 to 0.898,

indicating the more reduction of GO. As the thermal

reduction goes on, oxygen-containing functional

groups on GO layers are gradually removed, and the

content of sp3 hybrid carbon atoms is gradually

decreased, so the intensity of D band diminishes [36].

Consequently, the gradual restoration of sp2 hybrid

carbon atoms conjugate ring structure results in the

enhancement of G band intensity. While, further

thermal treatment leads to the increase in ID/IG.

When the temperature exceeds 300 �C, the GO sheets

are severely damaged by the deoxidation process and

large amount of vacancy and edge defects result in its

disordered structure [37].

The synthesized GO and TRGO are further ana-

lyzed by X-ray photoelectron spectroscopy (XPS) to

evaluate their chemical components. Figure S4a

shows that GO mainly has the characteristic peak of

carbon and oxygen without other impurities. As

shown in Fig. 2c, the C1s peak curve fitting of 130 �C-
TRGO mainly consists of four major peaks. They

center at 284.60, 286.62, 287.87 and 289.30 eV, which

can be attributed to the C–C, C–O (hydroxyl and

epoxy), C=O (carbonyl) and O–C=O (carboxyl)

groups, respectively [38]. In Fig. 2d, the peak related

to carboxyl nearly disappears in 350 �C-TRGO, and

the contents of C–O and C=O are also low. The fit-

tings of C1s peak in GO and TRGO reduced at the

temperature range of 130–350 �C are shown in Fig-

ure S4b–f. With increasing thermal reduction tem-

perature, the contribution of oxygen-containing

functional groups (the sum of the peak areas of four

functional groups divided by the full C1s peak area)

gradually decreases from 26.53% (GO) to 9.88%

(350 �C-TRGO), indicating its gradual increase in

reduction degree.

Figure 2 a Raman spectra of GO, 130 �C-TRGO and 350 �C-TRGO, b ID/IG of TRGO as a function of reduction temperature. C1s peak

curve fittings of c 130 �C-TRGO and d 350 �C-TRGO.
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The whole structure of TBAS is shown in Fig-

ure S5a, where the surface of sensor is clean enough.

Figure 3a shows the SEM image of TRGO sheets

bridging the gaps of interdigitated electrodes. Most

of TRGO sheets are larger than 10 lm and well dis-

persed on substrate forming a smooth morphology,

which keeps the two-dimensional nature of graphene

and the good contact between TRGO and electrodes.

All of this ensures the largest extent exposure of

TRGO sheets. With the increase in reduction tem-

perature, the conductivity of TBAS improves as

shown in Table S1 corresponding to the enhanced

reduction degree. The I–V curve of 130 �C-TRGO-

based sensor is shown in Figure S5b, whose linearity

and almost zero intercept to the Y-axil confirm the

ideal ohmic contact between the TRGO and Au

electrodes. Again, the 106 X resistance of 130 �C-
TRGO reflects the partial reduction of GO at low

temperature with leftover of rather large amount of

oxygen-containing functional groups. The transfer

characteristic of 130 �C-TRGO measured under N2

purging is shown in Fig. 3b. A typical bipolar char-

acteristic of graphene is observed with the measured

neutral point at - 0.095 V indicating a slightly

n-typed semiconductor property.

NH3 sensing properties of TBASs

Response time and responsivity are two key criteria

for gas sensors. Figure 4a displays the dynamic

response of 130 �C-TRGO-based sensor to NH3 with

various concentrations ranging from 5 to 200 ppm at

room temperature. It shows that the electrical resis-

tance of the sensor decreases rapidly with exposure

to NH3 and gradually recovers after N2 purging. This

can be attributed to the electrons transferring from

ammonia to TRGO due to its nature of reducing

agent, thereby increase the majority carriers (elec-

trons) concentration in the n-type graphene and

result in the decrease in its resistance. The respon-

sivity and response time of 130 �C-TRGO-based

sensor to 20-ppm NH3 are about 0.81% and 35 s,

respectively. And its response curve to 5-, 10- and

20-ppm ammonia is shown in Figure S6, in which

130 �C-TRGO-based sensor also exhibits apparent

and stable response to other low concentration

ammonia. Figure 4b shows the fit curves of the

responsivity of this device as a function of ammonia

concentration. It exhibits that the responsivity

monotonically increases with increasing ammonia

concentration, and there is a one-to-one correspon-

dence between them. A LOD as low as 0.9 ppm of the

sensor is calculated according to the data presented

in Fig. 4b using Formula (2). Details of the calculation

are shown in Figure S7. To check the reliability of the

sensor, the response of 130 �C-TRGO-based sensor is

tested in 100-ppm NH3 as shown in Fig. 4c. The

uniformly distributed TRGO sheets on substrate opt

to ammonia molecules adsorption which results in

excellent sensing performance of the devices.

In order to determine the optimal reduction tem-

perature for the fabrication of TBASs and the mech-

anism of the rapid response, the sensing properties of

TBASs reduced at different temperatures (130, 165,

Figure 3 a SEM image of the channel area of TBAS and white dashed lines is used to trace the edges of the TRGO sheets. b Current–gate

voltage (IDS - VG) transfer characteristic of 130 �C-TRGO.
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200, 250, 300 and 350 �C) are systemically investi-

gated. Figure 5a shows the dynamic response to

100-ppm NH3 of TBASs reduced at different tem-

peratures, and Fig. 5b shows the corresponding

responsivity and response time. It is found that with

the increase in thermal reduction temperature, the

responsivity gradually decreases, and the response

time decreases initially and then increases. Among

Figure 4 a Dynamic response of 130 �C-TRGO to 5–200-ppm ammonia at room temperature. b Fit curves of the responsivity of 130 �C-
TRGO as a function of ammonia concentration. c Response of 130 �C-TRGO of multi cycles to 100-ppm ammonia.

Figure 5 a Dynamic response curves and b sensing difference in

response time and responsivity of TBASs reduced at different

temperatures (130, 165, 200, 250, 300 and 350 �C) to 100-ppm

ammonia. c The responsivity of TBASs reduced at different

temperatures (130, 165, 200 and 250 �C) as a function of ammonia

concentration from 60 to 200 ppm. d Dynamic response and

recovery curve of 250 �C-TRGO to 100-ppm ammonia and the

enlarged inset indicates the response time of about 11 s.
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these sensors, the responsivity of 130 �C-TRGO is the

highest one-up to 1.97%, and the response time of

250 �C-TRGO is the shortest of 13.4 s on average. The

relation between the responsivity of TBASs reduced

at different temperatures (130, 165, 200 and 250 �C)
and the ammonia concentration, ranging from 60 to

200 ppm, is shown in Fig. 5c. It is noticeable that

130 �C-TRGO shows the highest responsivity to all

measured ammonia concentrations. Figure 5d exhi-

bits the dynamic response and recovery curve of

250 �C-TRGO to 100-ppm ammonia, and the enlarged

inset indicates that the response time is as short as

11 s.

It is worth noting that the response direction

reverses from the resistance decline to rise when the

sample reduction temperature is above 250 �C, which

could be attributed to the flip of its semiconductor

type. The GO reduced at low temperature (B 250 �C)
is n-type semiconductor, while it becomes p-type

when the reduction temperature is higher than

250 �C. The detailed transfer characterization of GO

reduced at different temperatures is shown in Fig-

ure S8. In GO- and rGO-based devices, the variation

of the ratio between electron acceptor (carboxyl and

carbonyl groups) and donor (sp2 hydroxyl, ether and

epoxy) of oxygen-containing functional groups is the

key that results in the electrical doping transition [39].

In order to test the durability of TBASs, the sensing

performance to 100-ppm ammonia of 130 �C-TRGO-

based device kept under the ambient condition with

humidity and temperature varying naturally for

3 months is tested. The results are demonstrated in

Fig. 6a, the responsivity of the sensor remains at

92.45%, 81.62% and 74.23% of its initial value while

the response time remains 123%, 138% and 117% for

50, 79 and 89 days, respectively. This demonstrates

the good long-term stability of TBASs.

Considering the fact that the most common appli-

cation environment of ammonia sensors is in refrig-

eration industry [40], so oxygen and water vapor in

the air are the main interfering gases. The oxygen

concentration is generally constant; in most cases, it

can be treated as a flat background; therefore, the key

interference comes from the humidity which has

large variations with change of time and locations

[41, 42]. To this point, it is critical to explore the

influence of humidity on sensing performance and

the dependence of output results on humidity. As

shown in Fig. 6b, the responsivity is enhanced with

the increasing RH (relative humidity) when RH is

less than 30%, then it begins to decline. When the RH

is higher than 60%, the responsivity is even lower

than that one in the completely dry environment.

Two main causes may account for these phenomena:

(1) Under a relatively low RH, water is conducive to

the deprotonation of carboxyl groups, which could

promote the acid–base reaction between NHþ
4 and

carboxyl groups after ionization and enhance the

specific adsorption of ammonia to carboxyl groups

on the surface of graphene [43]. (2) When the RH is

too high, the water molecules prevail ammonia

molecules on rGO adsorption sites [44]. In practical

applications of TBASs, one possible way to resolve

this interference can be using such a type of sys-

tematic conducted measurements as a calibration

with assistance of a real-time humidity information.

Figure 6 a Long-term stability of 130 �C-TRGO upon exposure to 100-ppm ammonia. b Responsivity to various ammonia

concentrations of 130 �C-TRGO as functions of RH.
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In terms of the main interfering species in industrial

cooling, the relevant selectivity test against oxygen,

water vapor and another general gas (NO2) is studied

and presented in Figure S9, which indicates that the

sensor has completely oppositely polarized response

of NH3 to all other tested gases.

A comparison between the ammonia sensing per-

formance of the TBASs in this work and other results

of graphene-based sensors is summarized in Table 1.

Gas sensing mechanism of TBASs

In this experiment, it is observed that with increasing

thermal reduction temperature, the responsivity of

TBASs to ammonia gradually decreases. This is due

to the fact that gas molecules mainly bond to the

carbon atoms of rGO, oxygen-containing functional

groups and defects [53–55]. Among them, the rich

oxygen-containing functional groups on rGO contain

abundant hydrogen bonds which can largely pro-

mote ammonia adsorption on the polar functional

groups [56, 57]. Therefore, the type and concentration

of oxygen-containing functional groups mainly

determine the gas sensing performance of TBASs.

Low-temperature reduction of GO will result in rel-

atively high concentration of residual oxygen-con-

taining function groups, consequently more

abundant active sites for adsorption of ammonia

molecules [58, 59]. However, when the reduction

temperature is above 300 �C, most of functional

groups on GO surface have been removed, which

greatly weakens the responsivity of TBASs. As shown

in Fig. 7a, with the increase in thermal reduction

temperature, the responsivity decreases which is

consistent with the content of residual functional

groups.

Moreover, it is found that with increasing thermal

reduction temperature, the response time of TBASs to

100-ppm ammonia decreases first and then increases.

Maity et al. theoretically revealed the adsorption

energy between different kinds of oxygen-containing

functional groups and ammonia, the results showed

that in all main functional groups of GO, the carboxyl

group (- 0.707 eV) had prominent higher adsorption

energy than all others such as hydroxyl group

(- 0.406 eV), carbonyl group (- 0.108 eV) and epoxy

group (- 0.106 eV) [60]. Figure S10 shows the sche-

matic of ammonia molecules adsorption on the

TRGO film. The adsorption energy and charge

transfer of ammonia molecules adsorbed on diverse

sites of TRGO are different from each other. Since the

higher the adsorption energy the fast the device

response will be, as shown in Fig. 7b, the measured

contribution of carboxyl group as a function of

reduction temperature is nearly perfectly opposite to

the result that the temperature-dependent response

Table 1 Performance of the presented NH3 sensor in this work compared with the previous works

Material of sensor Operating

temperature

Concentration

(ppm)

Responsivity

(%)

Response time

(s)

References

rGO (Hydrazine solution chemical

reduced)

RT 300 3.1 28.5 [19]

rGO (Hydrazine solution chemical

reduced)

RT 50 13.18 750 [45]

rGO (Hydrazine vapors chemical reduced) RT 400 930 31 [20]

rGO (NaBH4 solution chemical reduced) RT 1200 15.7 422 [46]

rGO (Glucose solution chemical reduced) RT 800 12 505 [47]

rGO (Spray coated) RT 80 * 5 * 300 [48]

rGO (LBL self-assembly and thermal

reduced)

RT 50 5.7 24 [21]

rGO (Laser reduced) 30 50 * 5 51 [24]

GO film RT 50 4 30 [49]

Graphene (Aerosol jet printed) RT 4.35 4.64 51.2 [50]

Graphene foam RT 1000 22.5 347 [51]

rGO-Graphene hybrid film RT 10 14.67 74 [52]

250 �C-TRGO (Thermal reduced) RT 100 0.53 13.4 This work

130 �C-TRGO (Thermal reduced) RT 20 0.81 35 This work
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time of TBAS afore-discussed. Noticeably, both the

highest concentration of carboxyl and the fastest

response appear at 250 �C-TRGO.

Conclusion

In this paper, we obtain smooth and well-dispersed

TRGO film with flake size more than 10 lm by

spinning dilute GO suspension combined with sub-

sequent in situ thermal reduction processing. Using

TRGO as sensing material, rapid responding, highly

stable and low-cost miniature ammonia sensors are

successfully developed. The testing results show that

250 �C-TRGO-based sensor has the fastest response

to 100-ppm ammonia with the response time as short

as 11 s, which can be attributed to the dominant

content of carboxyl resulting in high adsorption

energy to ammonia. The highest responsivity appears

at 130 �C-TRGO-based sensor which is up to 1.97%—

100-ppm ammonia with the response time of 23 s,

and it has outstanding long-term stability benefiting

from its rich oxygen-containing functional groups.

The thermal reduction temperature is an effective

parameter to be tuned for fabricating ammonia sen-

sor according to the specific application scenario. The

work reported here sheds a light on satisfying the

needs of rapid responding and low-power ammonia

sensors for the practical application at room

temperature.

Supplementary information

Supplementary information including measurements

for performance tests, characterization (SEM, XRD

and XPS of the as-prepared samples) and supporting

figures.
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