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Abstract

Biomass-derived microporous carbon-based supercapacitors have recently gained considerable attention, primarily due
to their exceptional cost-efficiency and significant contribution to promoting social sustainability. In this study, the long-
fiber plant okra stem was selected as a precursor for carbon materials. Utilizing its natural channels, microporous carbon
electrode materials were successfully synthesized through direct pyrolysis combined with KOH activation. The optimized
carbon electrode was then used to fabricate a symmetric supercapacitor. At a relatively low activation temperature of
500 °C, the symmetric supercapacitor exhibited excellent electrochemical performance. The specific capacitance reached
100.3 F g ! when tested at a current density of 0.2 A g !. Furthermore, after 10,000 charge-discharge cycles at a current
density of 2 A g !, the supercapacitor retained 97% of its original capacitance, demonstrating outstanding cycling stabil-
ity. This configuration not only enhanced the overall performance and durability but also significantly improved safety,
making it well-suited for applications in electronic devices.
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1 Introduction

In recent times, the escalating global energy and environmen-
tal challenges have highlighted the urgent need for develop-
ing energy storage systems that integrate sustainability with
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high-efficiency energy conversion [1]. Compared to tradi-
tional battery storage systems, supercapacitors are increas-
ingly recognized as an ideal solution for future energy
storage technology, thanks to their rapid charge/discharge
capabilities, large capacity, extended lifespan, and superior
environmental sustainability [2]. In the design of superca-
pacitors, carbon-based electrodes are essential components
that significantly impact the device’s overall performance.
The characteristics of these electrodes are key to determining
the energy storage capacity and efficiency of supercapacitors,
making them a focal point for technological development and
optimization. Carbon-derived materials are distinguished by
their superior electrical conductivity, expansive specific sur-
face area, and intricate hierarchical pore architecture. These
characteristics allow them to consistently deliver exceptional
capacitive performance while maintaining robust long-term
stability, making them highly suitable for advanced energy
storage applications. Additionally, the robust framework of
carbon materials provides enhanced mechanical durability,
allowing them to maintain structural integrity and function-
ality through numerous charge-discharge cycles [3].

In order to further improve the performance of superca-
pacitors and broaden their application scope, researchers
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are increasingly focusing on the precursor materials of car-
bon electrodes in supercapacitors, especially those low-cost
and environmentally friendly materials [4]. Compared with
advanced materials such as traditional carbon nanotubes,
graphene, and conductive polymers, biomass derived car-
bon materials have received great attention due to their
cost-effectiveness, wide availability, and environmental
friendliness [5]. These materials provide a feasible and sus-
tainable alternative as precursors for carbon electrodes in
supercapacitors [6, 7]. For supercapacitors, the three most
important factors affecting capacitive performance are
specific surface area (Sggr), electrode resistance (Rg) and
pore volume (V,,,), as has been well-established in previ-
ous machine learning studies [2, 7, §8]. Biomass-derived
carbon materials are particularly well-suited for electrodes
with excellent electrochemical performance, as they inher-
ently possess these desirable characteristics. Moreover, the
unique vascular structure of these plants plays a critical
role in facilitating the efficient transport and adsorption of
electrolyte ions, which is essential for enhancing the per-
formance of supercapacitors. By leveraging the naturally
arranged channels within these structures, the pore network
can be further optimized, reducing energy and material
losses during electrochemical reactions and maximizing the
adsorption of electrolyte ions [9—12].

Okra is a herbaceous plant belonging to the Malvaceae
family, characterized by a vascular bundle structure where
the top and bottom of the bundle are interconnected, facili-
tating the penetration of activators [6]. The inner walls of
these bundles feature numerous sieve pores that facilitate
the transport of electrolyte ions, making them ideal for
the creation of porous carbon materials in energy storage
systems [2]. Various lignocellulosic residues, such as cot-
ton stover [13], corn stover [14], and soybean stover [15],
have been investigated as sustainable carbon precursors for
supercapacitors. Compared to these feedstocks, okra stems
have a high cellulose content (a-cellulose content (67.5%),
moderate hemicellulose content (15.4%), and relatively
low lignin content (7.1%)), and its high content of cellu-
lose and hemicellulose is more conducive to the formation
of activated carbon with microporous/mesoporous struc-
ture [16, 17]. Furthermore, most of the available studies
on okra have focused on the pods or seeds [18], while the
stem remains an abundant but underutilized agricultural by-
product [19]. Therefore, selecting okra stems as a precursor
for carbon material preparation presents a twofold advan-
tage of waste minimization and enhanced cost efficiency.
This study involved the utilization of okra stem waste as
a carbon source, transforming it into carbon electrodes for
supercapacitors. The influence of activation temperature on
the surface morphology and structural characteristics of the
resultant biochar was comprehensively examined. Extensive
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electrochemical analyses were conducted to evaluate the
electrochemical performance of the biochar. The findings
indicate that the carbon material derived from okra stems
serves as a cost-effective electrode with significant potential
for high-efficiency energy storage in supercapacitors. More-
over, the conventional temperature range for KOH activa-
tion of biochar typically falls between 700 °C and 900 °C
[20-26]. However, this study identified an optimal activa-
tion temperature of 500 °C for okra-derived carbon, signifi-
cantly lower than the conventional activation temperatures
for other carbon materials. This reduced activation tempera-
ture not only conserves energy but also provides significant
cost advantages, effectively lowering production expenses.
Overall, the findings suggest that carbon materials derived
from okra stems exhibit excellent electrochemical perfor-
mance at low cost, making them a promising material for
high-performance supercapacitor applications.

2 Experimental section
2.1 Materials

Okra stems were collected from vegetable field in Tianjin,
China. Potassium hydroxide (KOH) was sourced from Tian-
jin Damao Chemical Reagent Factory, while acetylene black
and polytetrafluoroethylene (PTFE) were supplied by Tian-
jin Aiweixin Chemical Technology Co. Ltd. All reagents
used in the experiment were applied directly without any
further purification.

2.2 Synthesis of okra stem-based carbon

The okra stem was freeze-dried under vacuum. After freeze-
drying, the okra stems were pre-charred in a tube furnace.
The okra stems were heated from room temperature to
400°C in Ar atmosphere at a rate of 5°C min~ ! and held for
1 hour and be named as AC. Pre-carbonization temperature
was determined by thermogravimetric (TG) test (Fig. S1).
The KOH activation method catalyzes the rearrangement
of carbon atoms and the formation of highly microporous
structures, functional groups, and graphitized structures on
the surface of carbon materials through the intercalation of
potassium ions between the lattices, the synergistic oxidation
of the carbon elements, and the in-situ generation of CO-
in the high-temperature process for the activation of carbon
[27-29]. Therefore, KOH was chosen as the activator in this
study. AC was mixed with KOH at a mass ratio of 1:4, and
an appropriate amount of deionized water was added to form
a mixed solution, which was dried in an oven at 60 °C for
12 hours. The dried mixture was put into a tubular furnace,
heated to various target temperatures at a rate of 5 °C min~ !
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in Ar atmosphere, and held for 1 hour. Subsequent to cool-
ing back to room temperature at the same rate, the products
were thoroughly washed with 0.1 M HCl solution and deion-
ized water until reaching neutral pH. Following drying in an
oven at 80 °C for 12 hours, these materials were designated
as PC-x, with ‘x” representing the different activation tem-
peratures (400, 500, 600, 700, 800, and 900 °C). The entire
preparation process of PC-x is illustrated in Scheme 1.

2.3 Structural measurements

Testing methods included a scanning electron microscope
(SEM, SU3500, Hitachi), a X-ray diffraction (XRD, Bruker,
Cu-Ko, A=1.54060 A), a Raman spectrometer (RTS-2,
Titan Electro-Optics (Hong Kong) Limited, 532nm), The
decomposition temperature of the PC-500 material was
assessed through thermogravimetric analysis (TGA) using
a Mettler Toledo TG2 instrument, Determine the specific
surface area and pore size distribution of PC-500 using the
Brunauer Emmett Teller (BET) method combined with N
adsorption desorption isotherm.

2.4 Electrochemical test

Mix the synthesized porous carbon-based material thor-
oughly with PTFE and acetylene black in a mass ratio of
8:1:1. The slurry is compressed into thin sheets using a
roller press, after which the carbon film, measuring 0.8 x 0.8
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cm?, is pressed onto foam nickel under a pressure of 10 MPa
to form the carbon electrode. In the three-electrode setup,
the carbon electrode functions as the working electrode, the
Hg/HgO electrode as the reference, and Pt foil as the coun-
ter electrode. A 6 M KOH solution is used as the electrolyte
during electrochemical testing. At room temperature, several
electrochemical tests were performed using the CHI760E
electrochemical workstation, including cyclic voltammetry
(CV) at scan rates ranging from 2 to 100 mV/s, constant cur-
rent charge-discharge (GCD) at current densities between
0.2and 5 A g”!, and cycle life stability testing. The specific
capacitance of the electrode was calculated from the GCD
curve using the following Eq.

I x At
C_Ame (M

where C is the specific capacitance (F g '), I (A) represents
the discharge current, At (s) is the discharge time; m (g)
the mass of the active material, and AV (V) the potential
window.

In the two-electrode setup, a symmetric supercapacitor
was constructed using two identical working electrodes,
with 1 M H2SOs serving as the electrolyte. The total superca-
pacitor can be well defined through the following equation:

I x At
AV X m

C'cell = (2)
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Scheme 1 Schematic of the preparation process of PC-x
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where C_; (F g 1) is the device specific capacitance, The
energy density (E, Wh kg™ ') and power density (P, W kg™ 1)

can be calculated by C_;; from the following equation:

1 ) 1
E = 5 Ccell x AV* x % (3)
E
P =_—
~ 3600 “4)

Electrochemical impedance spectroscopy (EIS) measure-
ments were carried out at open circuit potential with a 10
mHz to 100 kHz sinusoidal signals at an amplitude of 5 mV.

3 Results and discussions

Figure 1 illustrates the morphology of okra stem phloem
fibers in their raw, pre-carbonized, and activated states. In
the raw phloem fibers of the okra stem (Fig. 1a-b), a well-
defined long-range ordered structure is observed in the sieve
tube, along with the sieve holes in the tube wall, indicat-
ing the presence of numerous vascular bundles and hollow
tubes. These interconnected hollow structures form a porous
scaffold crucial for subsequent carbonization and activation
processes, and it retains the original carbon skeleton well
after carbonization(Fig. lc). It exhibits directional chan-
nels with interconnected layered pores. The emergence of
these directional channels aids in speeding up ion transport,
while the interconnected pore network notably shortens the
ion transport pathway, significantly enhancing ion diffusion/

Fig. 1 SEM Characterization of
samples: raw phloem fibers of the
okra stem (a, b); pre-carbonized
okra stem (c); PC-400 (d);
PC-500 (e); PC-600 (f); PC-700
(g); PC-800 (h); PC-900 (i)
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transport efficiency [30]. These features play a vital role in
facilitating electrolyte penetration and creating more elec-
trochemically active sites, thereby enhancing the material’s
electrochemical performance. The SEM image depicted in
Fig. 1d corresponds to an activation temperature of 400 °C.
The image reveals a relatively smooth and compact sur-
face structure with some small, evenly distributed pores of
modest size. However, the pore volume and specific sur-
face area remain limited, suggesting incomplete activation
at 400 °C, resulting in reduced porosity. At an activation
temperature of 500 °C, the sample surface undergoes sig-
nificant structural transformations, exhibiting a notable
increase in pore quantity with a moderately distributed pore
size (Fig. le). The surface displays regular macropores and
mesopores, forming an interconnected porous network that
enhances the specific surface area and electrolyte perme-
ability. This feature promotes rapid ion diffusion and effi-
cient energy storage. In addition, the atomic composition
of the PC-500 sample is as follows: 73.71% C and 26.29%
O, indicating that biomass is decomposed by the activa-
tor during the pyrolysis activation process. The results in
the formation of a porous structure enriched with defects
and oxygen-containing functional groups. It increases the
wettability between the electrode/electrolyte and reduces
the interfacial resistance. Furthermore, it can enhance the
electrolyte accessibility and ionic adsorption/desorption,
and thus improves the overall electrochemical performance
[31, 32].Upon reaching 600 °C, the sample’s surface pores
further expand, but pore size distribution becomes uneven,
leading to areas of excessive activation with oversized pores
and voids (Fig. 1f). As the temperature rises to 700 °C, the

Q’;
100 m
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degree of porosity significantly increases, and more large
pores and disordered structures begin to form. The pores
in some areas have become excessively coarse, resulting in
a rough surface morphology of the material. The distribu-
tion of pores is no longer uniform, and chaotic carbon sheet
stacking layers have appeared (Fig. 1g). This phenomenon
is mainly due to excessive activation caused by high tem-
perature, leading to the destruction and instability of carbon
structure. As the temperature further increases, at 800 °C,
the pore structure of the sample becomes more irregular,
showing severe signs of over activation. Most of the pores
became extremely loose, and some areas showed damage
or “hollow” structures (Fig. 1h). This excessively high
activation temperature weakens the overall structure and
mechanical strength of the material. At a high temperature
of 900 °C, the pore structure of the sample reached its most
loose state, and the pore morphology in some areas almost
completely disappeared, presenting a large number of large
pores and cracks on the surface (Fig. 1i) [33]. At this point,
the overall structure of the sample becomes extremely frag-
ile, ultimately forming thin and porous carbon sheets.

XRD and Raman analyses were conducted to examine
the structural characteristics of six samples prepared at dif-
ferent activation temperatures. In Fig. 2a, the primary crystal
structure of the activated carbon sample is depicted through
XRD. The carbon materials prepared at 400, 500, and 600
°C exhibit a broad peak around 25° corresponding to the
(002) plane diffraction of disordered carbon, indicating its
non-crystalline nature [34]. As the activation temperature
rises from 700 °C to 900 °C, the intensity of the character-
istic XRD peak of the biochar sample notably diminishes,
and the peak width increases, suggesting that higher activa-
tion temperatures result in crystal structure disruption and
the introduction of more defects [35]. To further assess the
impact of activation temperature on the graphitization level
of the produced carbon, Raman spectroscopy was employed
to analyze the synthesized activated carbon, as shown in
Fig. 2b. Notably, two distinct peaks were identified at 1356

em” ! (D band) and 1579 cm™ ! (G band). The strong D
band typically indicates the presence of structural imperfec-
tions in amorphous carbon, while the G band signifies the
sp? hybridized graphite carbon structure, denoting ordered
graphite layers or planar carbon atom arrangements within
the materials [36]. The ratio of the intensities of the D and G
bands (I/1;) is recognized to reflect the disorder or graphiti-
zation level of carbon materials: a higher ratio implies more
defects, indicating a lower degree of structural order [37].

The Ip/1; ratios of PC-x (x = 400, 500, 600, 700, 800,
and 900 °C) were 0.905, 0.857, 0.954, 0.978, 0.983, and
1.045, respectively. A marked reduction from 0.905 at 400
°C to 0.857 at 500 °C reflects the suppression of structural
disorder and the development of more ordered graphitic
domains. This trend is associated with a relative weaken-
ing of the D band, suggesting that controlled activation at
500 °C facilitates the rearrangement of amorphous carbon
into locally ordered sp? networks. Beyond this temperature,
however, the I;y/I5 ratio increases progressively, reaching
1.045 at 900 °C, which indicates the reemergence of dis-
order. Such behavior can be attributed to overactivation at
elevated temperatures, where excessive etching and carbon
chain scission disrupt the lattice and generate new defect
sites [38]. These results highlight the dual role of thermal
treatment: moderate activation promotes graphitization and
enhances electrical conductivity, whereas excessive activa-
tion undermines structural integrity by introducing defects.
Consequently, the 500 °C sample achieves the most favor-
able balance, combining a high degree of graphitization
with structural stability, which directly underpins its supe-
rior capacitive performance.

To further characterize the chemical composition and
surface functional groups of the porous carbon material,
the PC-500 sample was analyzed using XPS. The high-res-
olution Cls spectrum (Fig. S2a) can be divided into three
peaks located at ~ 284.5, 286.2, and 288.1 eV, correspond-
ing to sp>-C, C-0, and C = O, respectively, and the contents
of C-O and O-C = O are 28.78% and 18.72%, respectively

Fig.2 (a) XRD patterns and (b) (a) (b)
Raman spectra of PC-x (x=400, D G
500, 600, 700, 800 and 900 °C) (002)
- PC-900 | = PC-900
il ” ,_r"' Rag
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[39, 40]. This high oxygen content increases the wettabil-
ity between the electrolyte and the electrode and enhances
the conductivity, which improves the electrochemical per-
formance [41]. O 1s XPS spectra (Fig. S2b) can be divided
into two peaks with binding energies of 533.8 and 535.6 eV,
which correspond to ether oxygen (C-O-C) and carboxylic
acid functional groups (COOH), respectively [39].

The pore characteristics of PC-500 were evaluated via
N2 adsorption-desorption analysis at 77 K. The N2 adsorp-
tion isotherm for the PC-500 samples, as shown in Fig. 3a,
distinctly aligns with the classic Type I isotherm character-
istics. Within the low-pressure range (< 0.1), there is a rapid
increase in adsorption, indicating a significant presence of
micropores in the PC-500 sample, enhancing the provi-
sion of active sites for electrochemical applications [42]. A
summary of the textural properties of PC-500 is presented
in Table 1, revealing an exceptionally high surface area of
1216 m* g~ !. Figure 3b depicts the pore size distribution
of the PC-500 sample, highlighting a prevalent pore size of
approximately 1 nm, indicative of a predominantly micro-
porous structure. The pore size distribution curve indicates
that the highest volume of pores falls within the range of
0.6 nm to 2 nm. This microporous-dominated pore structure
facilitates the smooth entry and exit of electrolyte ions and
shortens the electron transfer path. It can effectively pro-
mote the charge transfer process of reversible ion adsorp-
tion/desorption and thus enhance the specific capacitance.
Furthermore, the short diffusion paths provided by micro-
pores allow for a higher utilization of the accessible surface
area under low-to-moderate current densities, in agreement
with previous reports that optimized micropore size is criti-
cal for maximizing charge storage capability in carbon-
based supercapacitor [43].

To evaluate the electrochemical behavior of the samples
prepared at different carbonization temperatures, cyclic
voltammetry (CV) and galvanostatic charge—discharge
(GCD) measurements were conducted in a three-electrode
configuration using 6 M KOH as the electrolyte. As shown

Fig. 3 (a) N: adsorption-desorp- (
tion isotherms (77 K) and (b)

=
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Table 1 The parameters of pore structure of PC-500.

Sample SBET(rn2 Vtotal(cm3 Vmicm(cm3 Vmicro/
g) g) g) Vi (%)
PC-500 1216 0.42 0.41 97.6

in Fig. S3, the CV curves of all samples exhibit approxi-
mately rectangular shapes at moderate scan rates, indicat-
ing typical double-layer capacitive behavior. Moreover, the
GCD curves display symmetric triangular shapes at cur-
rent densities ranging from 0.2 to 10 A g* (Fig. S4). These
results confirm that the charge storage process primarily
arises from electrostatic adsorption of ions at the electrode—
electrolyte interface, consistent with an electric double-
layer capacitance (EDLC) mechanism [44].

To optimize the application of the synthesized carbon
materials in devices, the capacitance performance of PC-x
was assessed by fabricating symmetric supercapacitors
within a two-electrode system. Figure 4 illustrates the cyclic
voltammetry (CV) curve of PC-x at varying scanning rates
from 2 mV s~ ' to 100 mV s~ !, depicting the relationship
between voltage fluctuation and response current, thereby
elucidating the supercapacitor’s electrochemical behavior.
As the scanning rate increases in the CV curve of PC-400
(Fig. 4a), the degree of curve distortion intensifies. This
effect can be attributed to the lower activation tempera-
ture, reduced porosity, and simplified pore structure, lead-
ing to heightened charge transfer resistance (as indicated in
Table 2). The hindered diffusion of electrolyte ions within
the electrode material restricts the charge storage capacity,
preventing the formation of a highly symmetrical rectangu-
lar curve. Particularly at higher scanning rates, significant
curve bending occurs, impeding local charge discharge
reactions and resulting in deformation of the CV curve
[45]. At an activation temperature of 500 °C, as depicted
in Fig. 4b, the CV curve of PC-500 exhibits enhancements
compared to PC-400, with a curve shape closer to an ideal
rectangle, particularly at lower scan rates. This indicates
an improvement in the electrochemical performance of
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Fig.4 CV curves of the PC-x (x=400, 500, 600, 700, 800, and 900 °C) symmetric supercapacitor at various scan rates within the voltage range of
0-0.8 V. (a) PC-400, (b) PC-500, (¢) PC-600, (d) PC-700, (e) PC-800, (f) PC-900

Table 2 R, and R, parameters for all samples

T(°C) 400 500 600 700 800 900
R (€2) 1.430 1.106 1.413 1.003 2.815 2.558
R (Q) 3.586 2.045 0.020 0.01 0.011 0.051

the material. Even at high scanning rates, while the curve
retains some curvature, it appears smoother than that of
PC-400, suggesting good charge discharge reversibility.
The superior performance can be attributed to the activa-
tion temperature of 500 °C, which enhances the porosity of
the sample, leading to a more uniform distribution of pores.
This facilitates easier penetration of electrolyte ions into
the electrode material’s pores, thereby enhancing capaci-
tance performance. At this temperature, the material struc-
ture exhibits a high degree of order, supporting a rapid ion
diffusion rate [46]. As the temperature escalates to 600 °C
(Fig. 4c), the CV curve continues its trend towards an ideal
rectangle, especially noticeable at low scan rates, approach-
ing typical double-layer capacitor behavior. With further
increments in the scanning rate, the curve slightly bends,
indicating a degree of charge transfer limitation. In the CV
curve of PC-700 (Fig. 4d), as the scanning rate increases,
the curve progressively exhibits a higher current response
while maintaining good symmetry, implying a more revers-
ible charge storage and release process within the electrode
material. However, even at high scanning rates, the curve

retains some curvature, pointing to electrochemical kinetic
limitations in the charge transfer process. Comparatively,
when the temperature rises to 800 °C (Fig. 4e), the curve
at lower scanning rates approaches a rectangular shape,
showcasing high capacitance characteristics. Nevertheless,
at higher scanning rates, the curve displays increased curva-
ture, indicating restricted ion diffusion. Upon reaching 900
°C (Fig. 4f), although the curve maintains good symmetry
at lower scanning rates, the curvature significantly intensi-
fies with increasing scan rate, accompanied by a relatively
modest current response. This suggests that under the high-
temperature activation of 900 °C, excessive activation of the
pore structure leads to heightened ion diffusion limitations
and decreased electrochemical performance. At a scanning
rate of 2 mV s~ !, the specific capacitances of the six samples
were measured as 66.4, 103.1, 95.9, 90.8, 75.4, and 56.4 F
g~ !, respectively. Notably, the sample activated at 500 °C
exhibited the highest specific capacitance. This underscores
that an activation temperature of 500 °C facilitates the for-
mation of rich microporous structures, boosts specific sur-
face area and graphitization degree, thereby offering more
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electrochemically active sites for the adsorption of electro-
lyte ions, ultimately yielding a higher specific capacitance
[47].

The charge-discharge behavior of the PC-x mate-
rial was evaluated through electrochemical galvanostatic
charge-discharge (GCD) measurements, with the outcomes
illustrated in Fig. 5. At 400 °C, the GCD curve (Fig. 5a)
is asymmetric, with longer discharge time, reflecting slug-
gish charge transfer due to the low porosity of PC-400 [48].
Moving to 500 °C, the charge-discharge process exhibits
a more symmetrical triangular shape, with a flatter curve
signifying a more stable charge storage and release process
of the electrode material (Fig. 5b). The improved charge
transfer performance of the sample indicates enhanced
reversibility. Upon reaching 600 °C, the charge-discharge
curve maintains good symmetry, demonstrating ideal elec-
trochemical performance (Fig. 5c). At lower current den-
sities, the curve remains stable and approaches an ideal
triangular shape. However, with increasing current densi-
ties, the curve slightly steepens, indicating a certain impact
on the charge transfer speed under high current densities.
The elevated porosity resulting from the 600 °C activation
temperature facilitates faster penetration of electrolyte ions
into the electrode surface, optimizing material conductivity
and showcasing favorable charge-discharge characteristics.
Examining the GCD curve of PC-700, as the current density
rises, the curve steepens, and the charge-discharge process

becomes more asymmetric, signaling a gradual limitation
in charge transfer speed (Fig. 5d). At higher current densi-
ties, the discharge duration noticeably shortens, suggesting
limitations in ion diffusion and charge storage capabilities
of the electrode material under such conditions. The 700
°C activation temperature increases the sample’s porosity,
but also leads to the presence of uneven and larger pores,
potentially complicating the diffusion and transport paths of
electrolyte ions within the electrode, thereby affecting elec-
trochemical performance at high current densities. At 800
°C, with increasing current density, the curve intensifies,
and the discharge duration significantly shortens due to the
excessively loose pore structure resulting from the activa-
tion temperature, leading to irregular structures and large
pores in certain areas (Fig. 5e). This may impede electrolyte
permeability, elongate ion diffusion paths, and subsequently
impact electrochemical performance at high current den-
sities. Upon reaching 900 °C, as the current density esca-
lates, the charge-discharge duration decreases, significantly
diminishing the electrochemical performance (Fig. 5f). The
pore structure of the sample becomes excessively loose due
to the high-temperature activation, resulting in severe over-
activation and the presence of uneven, large pores, further
hindering electrolyte permeability and ion diffusion rates.
At high current densities, the electrochemical performance
declines significantly, making effective charge storage
nearly unattainable, leading to extremely short discharge
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times. The capacitance of PC-x (x = 400, 500, 600, 700,
800, and 900 °C) at 0.2 A gf1 measures 65, 100.3, 93.4, 75,
72,and 53.1 F g~ !, respectively. PC-500 attains the highest
capacitance because activation at this temperature produces
an optimal balance—abundant microporosity (high accessi-
ble surface area) together with preserved channel connectiv-
ity and an enhanced degree of graphitization, thus enabling
both efficient ion adsorption and favorable electronic con-
ductivity while avoiding the transport penalties associated
with excessively large or collapsed pores [49].

Figure 6a shows the variation of specific capacitance
of carbon materials with activation temperature at differ-
ent scanning rates. At low scan rates, such as 2 mV s all
samples at different activation temperatures display high
specific capacitance, suggesting effective electrolyte ion
penetration into the electrode material pores and complete
charging and discharging processes, resulting in higher spe-
cific capacitance [50]. As the scanning rate increases, the
impact of activation temperature on capacitance becomes
evident. Samples activated at 500 °C and 600 °C maintain
good specific capacitance, whereas the sample activated at
400 °C experiences a significant decrease, likely due to an
imperfect pore structure and high charge transfer resistance
resulting from low-temperature activation. At higher scan-
ning rates, the specific capacitance of all samples generally
decreases due to the limitation on the diffusion rate of elec-
trolyte ions, leading to incomplete charge storage processes.
The capacitance retention rates for the six samples are 23%,
42%, 65%, 60%, 59%, and 75%, respectively. These results
clearly demonstrate that samples activated at higher tem-
peratures exhibit superior capacitance retention capabilities.

The enhanced capacitance retention capabilities observed in
samples activated at higher temperatures may be attributed
to the formation of well-developed mesoporous and macro-
porous structures, facilitating rapid ion diffusion and charge
storage at elevated scan rates [20].

In Fig. 6b, the specific capacitance of carbon materials is
depicted against activation temperature at varying current
densities. At low current densities, such as 0.2 A g !, carbon
materials typically exhibit sufficient charge storage capac-
ity, resulting in higher specific capacitance across all sam-
ples. Notably, the sample activated at 500 °C demonstrates
the highest specific capacitance at low current density, indi-
cating a robust charge storage ability at this temperature.
Conversely, the sample activated at 400 °C, characterized
by a simpler pore structure, high charge transfer resistance,
and limited electrolyte ion penetration, shows lower spe-
cific capacitance. As current density increases, the specific
capacitance decreases gradually for all samples, with a sig-
nificant decline observed in the sample activated at 400 °C.
This decrease may be attributed to its irregular pore struc-
ture or larger pore size, restricting ion transport efficiency.
At activation temperatures of 500 °C and 600 °C, the sam-
ples continue to demonstrate favorable specific capacitance,
indicating sustained pore structure and conductivity perfor-
mance at moderate current densities.

Electrochemical impedance spectroscopy (EIS) was con-
ducted across a frequency range of 10 mHz to 100 kHz with
an open circuit potential of 5 mV to evaluate the electro-
chemical behavior of the six electrode materials, as depicted
in Fig. 6¢ and detailed in Table 2. The equivalent circuit dia-
gram used for EIS fitting is illustrated in Fig. S5. The point
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of intersection of the EIS curves with the real axis signifies
the intrinsic resistance (R,) of the electrodes, encompass-
ing the resistance of the current collector, intrinsic electrode
material resistance, and contact resistance between them.
The semicircular domain observed in the high-frequency
range corresponds to the charge transfer resistance (R),
predominantly influenced by the formation of the electro-
chemical double layer [51]. In the low-frequency range, the
EIS curves of the PC-x supercapacitors deflect towards the
imaginary axis, indicating the superior capacitive behav-
ior of the okra stem-based supercapacitors [52]. The initial
point where the curve intersects the real axis represents the
equivalent series resistance (ESR) of the electrode materials
[7]. In Fig. 6¢, for PC-400 and PC-500, the relatively higher
R, values (3.586 and 2.045 €, respectively) can be attrib-
uted to incomplete removal of residual non-carbon compo-
nents at lower activation temperatures, which may generate
less uniform pore structures and hinder charge transfer [53].
The long-term stability of the electrodes was evaluated
through galvanostatic charge-discharge (GCD) measure-
ments at a current density of 2 A g~'. After 10,000 charge-
discharge cycles, the PC-500-based supercapacitor retained
97% of its initial capacitance, underscoring the exceptional
cycling stability of the okra stem-derived carbon materials
(Fig. 6d). This remarkable stability is primarily attributed
to the moderate activation temperature (500 °C), striking
a balance between pore structure, chemical stability, and
mechanical strength, thereby enabling the carbon materials
to maintain a high capacitance retention rate over extended
cycling period [54, 55].

Table 3 compares the obtained results with those of vari-
ous biomass-derived activated carbons from the last three
years. The capacitance values either match or exceed those
of most other carbon materials in aqueous electrolytes.

Additionally, Fig. S6 illustrates the Ragone chart for the
symmetric supercapacitor derived from okra stems in H>SOa
electrolyte, demonstrating an energy density of 8.9 Wh kg !
and a power density of 80 W kg~ !, with the power density
peaking at 2000 W kg !. These values either surpass or are
in line with those documented for biomass-derived superca-
pacitors in prior research (See Table S1).

Utilizing okra waste at a lower activation temperature,
microporous carbon materials are synthesized, with PC-500
displaying exceptional electrochemical performance attrib-
uted to its microporous configuration. The significance of
this structure lies in its ability to facilitate the formation of
the electrochemical double layer, particularly at lower cur-
rent densities. This microporous architecture is a result of
the inherent vascular bundle structure in okra stems, stream-
lining the activation process and reducing the required tem-
perature. Lower activation temperatures equate to decreased
energy consumption, facilitating the large-scale production
of biomass-derived carbon materials for integration into
energy storage systems.

4 Conclusion

This study pioneers the utilization of okra stem-derived
carbon materials to fabricate activated carbon electrodes
with enhanced porous structures via carbonization and
KOH activation processes. By optimizing the activation
temperature, both the pore architecture and conductivity of
the electrodes exhibit significant enhancements. Particu-
larly, electrodes treated at 500 °C maintain a microporous
structure while ensuring excellent conductivity, resulting
in outstanding performance in supercapacitor applica-
tions. The symmetrical supercapacitor achieved a specific

Table 3 Capacitance comparison for various biomass-derived carbon materials

Biomass Activation agent Activation tem-  Electrolyte/ Current Specific capaci- Ref.
perature (°C) Electrode configuration density tance (Fg 1)
(Agh

corn stalk-derived KOH 800 6 MKOH/3 E 0.1 103 [56]
Terminalia elliptica H,PO, 400 6 MKOH/3 E 1 183.4 [57]
Eucalyptus leaves ZnCl, 700 2MKOH/3 E 0.25 258 [58]
(N-doped)
Hibiscus flower KOH 800 6 MKOH/3 E 1 216 [20]
Dandelion flower stem K,FeO, 700 6 MKOH/3 E 0.5 309 [59]
Dandelion flower stem K,FeO, 700 1 M Li,SO,/2E 0.25 40 [59]
Puffed rice KOH 800 6 MKOH/2 E 0.5 21.1 [26]
Lacquer wood H,PO, 600 1 MH,SO,/3E 0.2 354 [60]
Residual carbon KOH-K,CO4 400 6 MKOH/2 E 0.5 52.5 [61]
Nigella sativa KOH 900 6 MKOH/3 E 0.5 210 [62]
Waste coffee KOH 800 6 MKOH/3 E 0.5 164.4 [63]
Waste coffee KOH 800 6 M KOH/2 E 0.5 58.7 [63]
Okra stem KOH 500 1 MH,SO,/2E 0.2 100.3 This

work
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capacitance of 100.3 F g ' at 0.2 A g~ !, and maintained
97% of its initial capacitance even after 10,000 GCD
cycles, indicating significant cycling stability. This study
introduces an efficient technique for transforming okra
stem residues into high-performance carbon materials suit-
able for energy storage devices, showcasing their promise
in renewable energy storage, electric devices, and diverse
applications. The cost-effective and sustainable micro-
porous carbon derived from okra stems holds significant
potential for industrial utilization in high-performance
energy storage technologies.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s13399-025-06977-9.

Acknowledgements This work was financially supported by the
National Key R & D Program of China (No. 2022YFC3006303).

Authors’ contributions Wen Li: Methodology, Investigation, Data cu-
ration, Writing—original draft preparation. Mingyu Wu: Methodology,
Investigation, Data curation, Writing—original draft preparation. Ze-
jian Chen: Investigation, Data curation, Writing preparation. Jianxiong
Zhao: Writing-review & editingRongke Sun: Investigation, Data cura-
tion. Xiao Zhang: Investigation, Data curation. Dongliang Ma: Valida-
tion.Yanqing Ma: Validation, Data curation, Writing-review & editing,
Supervision. Lei Ma: Conceptualization, Supervision, Methodology,
Validation, Writing- review & editing.

Data availability Data will be made available on request.

Declarations

Competing interests The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

1. Ruman UE, Khan A, Fahad HM, Asif M, Shaheen F, Aziz MH,
Ahmad R, Alam M, Sharif S, Afzal S (2024) Biogenic-eco-
friendly synthesized SnO2/CuO/FeO/PVP/RGO nanocomposite
for enhancing energy density performance of hybrid supercapaci-
tors. J Energy Storage 89:111643—111654. https://doi.org/10.101
6/j.est.2024.111643

2. WangJ, Zhang X, Li Z, Ma Y, Ma L (2020) Recent progress of
biomass-derived carbon materials for supercapacitors. J Power
Sources 451:227794. https://doi.org/10.1016/j.jpowsour.2020.22
7794

3. Anil Kumar Y, Koyyada G, Ramachandran T, Kim JH, Sajid S,
Moniruzzaman M, Alzahmi S, Obaidat IM (2023) Carbon materi-
als as a conductive skeleton for supercapacitor electrode applica-
tions: a review. Nanomaterials (Basel) 13:1049—1084. https://doi.
org/10.3390/nano13061049

4.  Zhang Y, Pan H, Zhou Q, Liu K, Ma W, Fan S (2023) Biomass-
derived carbon for supercapacitors electrodes — a review of recent
advances. Inorg Chem Commun 153:110768-110785. https://doi
.org/10.1016/j.inoche.2023.110768

5. Yao Y, Zhou W, Cai K, Wen J, Zhang X (2024) Advances in the
study of the biological activity of polysaccharide-based carbon

11.

13.

15.

16.

18.

19.

20.

dots: a review. Int J Biol Macromol 281:135774—135787. https://
doi.org/10.1016/j.ijbiomac.2024.135774

Chen D, Chen H, Kuang Z (2024) Cotton fiber-derived carbon
decorated with MoS2 for high electromagnetic wave absorption.
Mater Chem Phys 326:129844-129853. https://doi.org/10.1016/j
.matchemphys.2024.129844

Sun R, Zhang X, Chen Z, Ma Y, Ma L (2023) Application of long
fibrous coconut silk-based porous carbon in flexible supercapaci-
tor. J Energy Storage 66:107410. https://doi.org/10.1016/j.est.20
23.107410

Tee JX, Selvarajoo A, Arumugasamy SK (2022) Prediction of
carbon sequestration of biochar produced from biomass pyrolysis
by artificial neural network. J Environ Chem Eng 10:107640—
107658. https://doi.org/10.1016/j.jece.2022.107640

Zhao X, Li C, Sha L, Yang K, Gao M, Chen H, Jiang J (2022) In-
built fabrication of MOF assimilated porous hollow carbon from
pre-hydrolysate for supercapacitor. Polymers 14:3377-3391. http
s://doi.org/10.3390/polym14163377

. Yang Y, Zhang F, Wei K, Zhai B, Wang X (2022) Porous car-

bon microspheres with controlled porosity and graphitization
degree for high-performance supercapacitor. J Electroanal Chem
918:116449-11659. https://doi.org/10.1016/j.jelechem.2022.116
449

Zhang X, Li Z, Tian X, Ma Y, Ma L (2021) Highly ordered micro-
pores activated carbon from long fiber biomass for high energy
density supercapacitors. ChemistrySelect 6:13015-13023. https:/
/doi.org/10.1002/slct.202103712

Zhang D, Sun L, Liu Q, Sun H, Wang Q, Li W, Li Z, Wang B
(2021) Ultra-high specific surface area porous carbon derived
from chestnut for high-performance supercapacitor. Biomass
Bioenergy 153:106227-106236. https://doi.org/10.1016/j.biomb
10e.2021.106227

Tian X, Ma H, Li Z, Yan S, Ma L, Yu F, Wang G, Guo X, Ma Y,
Wong C (2017) Flute type micropores activated carbon from cot-
ton stalk for high performance supercapacitors. J Power Sources
359:88-96. https://doi.org/10.1016/j.jpowsour.2017.05.054

Qin L, Cao Y, Cui Z, Feng F (2025) Rapid fabrication of meso-
porous N- and P-codoped carbon from corn straw for advanced
supercapacitor applications. J Energy Storage. https://doi.org/10.
1016/j.est.2024.114849

Guo L, Jiao S, Wei G, Zhao X, Zhang J, Zhang H, Zhao X, Chen
H, Ji X (2025) Regulating the pore structure and heteroatom dop-
ing of soybean straw carbon based on a bifunctional template
method for the high-performance carbon supercapacitor. Chem-
SusChem 18:¢202400780. https://doi.org/10.1002/cssc.2024007
80

Duman MN, Kocak ED, Merdan N, Mistik I (2017) Nonwoven
production from agricultural okra wastes and investigation of
their thermal conductivities. IOP Conference Series: Materials
Science and Engineering 254:192007. https://doi.org/10.1088/17
57-899X/254/19/192007

Teng Z, Han K, Cao Y, Qi J, Wang M, Liu J, Li Y (2025) N-doped
porous carbon derived from different lignocellulosic biomass
models for high-performance supercapacitors: the role of lignin,
cellulose and hemicellulose. Int J Biol Macromol. https://doi.org/
10.1016/j.ijbiomac.2024.138815

Majhi E, Deshpande AS, Batteries (2025) & Supercaps
n/a:2500160. https://doi.org/10.1002/batt.202500160

Sun C, Tan H, Zhang Y (2023) Simulating the pyrolysis interac-
tions among hemicellulose, cellulose and lignin in wood waste
under real conditions to find the proper way to prepare bio-oil.
Renew Energy 205:851-863. https://doi.org/10.1016/j.renene.20
23.02.015

Zhu L, Wang Q, Wang H, Zhao F, Li D (2022) One-step chemi-
cal activation facilitates synthesis of activated carbons from Acer
truncatum seed shells for premium capacitor electrodes. Ind

@ Springer


https://doi.org/10.1016/j.ijbiomac.2024.135774
https://doi.org/10.1016/j.ijbiomac.2024.135774
https://doi.org/10.1016/j.matchemphys.2024.129844
https://doi.org/10.1016/j.matchemphys.2024.129844
https://doi.org/10.1016/j.est.2023.107410
https://doi.org/10.1016/j.est.2023.107410
https://doi.org/10.1016/j.jece.2022.107640
https://doi.org/10.3390/polym14163377
https://doi.org/10.3390/polym14163377
https://doi.org/10.1016/j.jelechem.2022.116449
https://doi.org/10.1016/j.jelechem.2022.116449
https://doi.org/10.1002/slct.202103712
https://doi.org/10.1002/slct.202103712
https://doi.org/10.1016/j.biombioe.2021.106227
https://doi.org/10.1016/j.biombioe.2021.106227
https://doi.org/10.1016/j.jpowsour.2017.05.054
https://doi.org/10.1016/j.est.2024.114849
https://doi.org/10.1016/j.est.2024.114849
https://doi.org/10.1002/cssc.202400780
https://doi.org/10.1002/cssc.202400780
https://doi.org/10.1088/1757-899X/254/19/192007
https://doi.org/10.1088/1757-899X/254/19/192007
https://doi.org/10.1016/j.ijbiomac.2024.138815
https://doi.org/10.1016/j.ijbiomac.2024.138815
https://doi.org/10.1002/batt.202500160
https://doi.org/10.1016/j.renene.2023.02.015
https://doi.org/10.1016/j.renene.2023.02.015
https://doi.org/10.1007/s13399-025-06977-9
https://doi.org/10.1016/j.est.2024.111643
https://doi.org/10.1016/j.est.2024.111643
https://doi.org/10.1016/j.jpowsour.2020.227794
https://doi.org/10.1016/j.jpowsour.2020.227794
https://doi.org/10.3390/nano13061049
https://doi.org/10.3390/nano13061049
https://doi.org/10.1016/j.inoche.2023.110768
https://doi.org/10.1016/j.inoche.2023.110768

40

Page 12 of 13

Biomass Conversion and Biorefinery (2026) 16:40

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

Crops Prod 187:115458-115470. https://doi.org/10.1016/j.indcr
0p.2022.115458

Hepsiba P, Rajkumar S, Elanthamilan E, Wang S-F, Princy Merlin
J (2022) Biomass-derived porous activated carbon from anacar-
dium occidentale shell as electrode material for supercapacitors.
New J Chem 46:8863—8873. https://doi.org/10.1039/d2nj01041k
Kim D, Hadigheh SA, Wei Y (2024) Unlocking biosolid pyroly-
sis: towards tailored biochar with different surface properties.
Mater Today Sustain 27:100868—110079. https://doi.org/10.101
6/j.mtsust.2024.100868

Elanthamilan E, Jennifer SJ, Wang S-F, Merlin JP (2022)
Effective conversion of Cassia fistula dry fruits biomass into
porous activated carbon for supercapacitors. Mater Chem Phys
286:126188-126198. https://doi.org/10.1016/j.matchemphys.202
2.126188

Aruchamy K, Dharmalingam K, Lee CW, Mondal D, Sanna
Kotrappanavar N (2022) Creating ultrahigh surface area func-
tional carbon from biomass for high performance superca-
pacitor and facile removal of emerging pollutants. Chem Eng J
427:131477-131489. https://doi.org/10.1016/j.cej.2021.131477
Deng L, Zhao Y, Sun S, Feng D, Zhang W (2024) Preparation of
corn straw-based carbon by carbonization-KOH activation two-
step method: Gas—solid product characteristics, activation mecha-
nism and hydrogen storage potential. Fuel 358:130134-130147. h
ttps://doi.org/10.1016/j.fuel.2023.130134

Xie X, Zhang B, Wang Q, Zhao X, Wu D, Wu H, Sun X, Hou C,
Yang X, Yu R, Zhang S, Murugadoss V, Du W (2021) Efficient
microwave absorber and supercapacitors derived from puffed-
rice-based biomass carbon: effects of activating temperature. J
Colloid Interface Sci 594:290-303. https://doi.org/10.1016/j.jcis.
2021.03.025

Qi F, Xia Z, Sun R, Sun X, Xu X, Wei W, Wang S, Sun G (2018)
Graphitization induced by KOH etching for the fabrication of
hierarchical porous graphitic carbon sheets for high performance
supercapacitors. ] Mater Chem A 6:14170-14177. https://doi.org
/10.1039/c8ta01186a

FuY, ShenY, Zhang Z, Ge X, Chen M (2019) Activated bio-chars
derived from rice husk via one- and two-step KOH-catalyzed
pyrolysis for phenol adsorption. Sci Total Environ 646:1567—
1577. https://doi.org/10.1016/j.scitotenv.2018.07.423

Zhao R, Hao J, Yang X, Zhao Y, Chen J, Guo J, Chi C, Guo Q
(2024) FeCl3 induced catalytic activation prepared porous carbon
with carbon nanotube skeleton from coal for supercapacitor elec-
trodes. J Power Sources. https://doi.org/10.1016/j.jpowsour.2024
.235436

Zhang R, Wang Z, Zhao R, Lin Z, Yoo CG, Yang G, Chen J, Lyu
G (2024) Construction of cellulose 3D network composite mem-
brane supported by hydroxylated boron nitride with high surface
charge density to achieve high-efficiency osmotic energy harvest-
ing. Chem Eng J 500:157000-157012. https://doi.org/10.1016/j.c
€j.2024.157000

Vinu M, Prabu S, Virgin A, Chiang K-Y, Srivastava B, Ranjith-
kumar R (2025) Pre-carbonization of B/N/O heteroatom-codoped
hierarchical porous carbon spheres derived from bio-waste
orange peel for high-performance supercapacitors. Mater Res
Bull 189:113441. https://doi.org/10.1016/j.materresbull.2025.11
3441

Sheng Z, Tang Z, Sun Y, Chen E, Hou D, Han X, Li H, Wang Z,
Xie X, Li X, Lin X (2025) Oxygen-doped porous carbon mate-
rials derived from multiple ginkgo-based biomass for enhanced
zinc ion hybrid capacitors. Colloids Surf A Physicochem Eng Asp
726:137773. https://doi.org/10.1016/j.colsurfa.2025.137773
Zhang H, Shen Z, Zeng R, Liang Q, Liu H (2024) Insights into
pyrolysis product characteristics and carbon structure evolution
of bituminous coal under high-temperature thermal shock. Fuel
371:132096-132107. https://doi.org/10.1016/j.fuel.2024.132096

@ Springer

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Jaidan Jauhari, Almafie MR, Marlina L, Nawawi Z, Sriyanti I
(2021) Physicochemical properties and performance of graphene
oxide/polyacrylonitrile composite fibers as supercapacitor elec-
trode materials. RSC Adv 11:11233-11243. https://doi.org/10.10
39/DORA10257A

Kong L, Li C, Sun R, Zhang S, Wang Y, Xiang J, Hu S, Wang D,
Leng C, Hu X (2024) Thermal pretreatment of Willow branches
impacts yield and pore development of activated carbon in sub-
sequent activation with ZnCI2 via modifying cellulose structure.
Chin J Chem Eng 69:227-237. https://doi.org/10.1016/j.cjche.20
24.01.014

Reshma RP, Abishek NS, Gopalakrishna KN (2024) Synthesis
and characterization of graphene oxide, tin oxide, and reduced
graphene oxide-tin oxide nanocomposites. Inorg Chem Commun
165:112451-112463. https://doi.org/10.1016/j.inoche.2024.112451
Mehdi R, Naqvi SR, Khoja AH, Hussain R (2023) Biomass
derived activated carbon by chemical surface modification as
a source of clean energy for supercapacitor application. Fuel
10.1016/j.fuel.2023.128529:128529-12839. https://doi.org/10.10
16/j.fuel.2023.128529

Gongxiang S, Yankui W, Dexin H, Hanjian L, Abdullahi SA, Jun
X, Long J, Yi W, Sheng S, Song H, Jun X (2022) The heating
rate and final temperature impacts on the coconut shell char struc-
ture characteristics during photo-thermal pyrolysis. J Anal Appl
Pyrolysis 167:105695-105702. https://doi.org/10.1016/j.jaap.20
22.105695

Dhashnamoorthy N, Nandhakumar B, Kumar RK, Radhamani
AV (2025) Biomass to carbon nanoarchitectonics: ultrahigh-sur-
face area micro-mesoporous activated carbon synthesized from
palmyra palm tree flowers for advanced eco-friendly supercapaci-
tors. Diamond Relat Mater 159:112785. https://doi.org/10.1016/j
.diamond.2025.112785

Guye ME, Dabaro MD, Kim H (2025) Biomass-derived gra-
phitic-like hierarchical porous carbon for electrochemical super-
capacitor application. J Energy Storage 115:116037. https://doi.o
1rg/10.1016/j.est.2025.116037

Chen Y, Liu X, Ma X, Xia J, Yan D, Diao R, Zha Z, Qi F, Ma
P (2025) Biomass-based 2D porous carbon with cross-linked
nanosheets via co-hydrothermal pretreatment for high-perfor-
mance supercapacitors. Chem Eng J 519:165145. https://doi.org/
10.1016/j.cej.2025.165145

Cheng Z, Wu H, Zhang H, Wang Z, Wang L, Zou X, Zhu G
(2024) Synthesis of cuprous organic frameworks with adjustable
pores as membrane materials for C3H6/C3H8 separation. Small
Struct 2:95-105. https://doi.org/10.1002/sstr.202400295

Tian X, Zhu S, Peng J, Zuo Y, Wang G, Guo X, Zhao N, Ma Y, Ma
L (2017) Synthesis of micro- and meso-porous carbon derived
from cellulose as an electrode material for supercapacitors. Elec-
trochim Acta 241:170-178. https://doi.org/10.1016/j.electacta.20
17.04.038

Kumar TR, Senthil RA, Pan Z, Pan J, Sun Y (2020) A tubular-
like porous carbon derived from waste American poplar fruit as
advanced electrode material for high-performance supercapaci-
tor. J Energy Storage 32:101903. https://doi.org/10.1016/j.est.20
20.101903

Zhang B, Xu Y, Wang J, Ma X, Hou W, Xue X (2021) Electro-
chemical performance of LiFePO4/graphene composites at low
temperature affected by preparation technology. Electrochim
Acta 368:137575-137582. https://doi.org/10.1016/j.electacta.20
20.137575

Huo S, Zhao Y, Zong M, Liang B, Zhang X, Khan IU, Li K (2020)
Enhanced supercapacitor and capacitive deionization boosted by
constructing inherent N and P external defects in porous car-
bon framework with a hierarchical porosity. Electrochim Acta
353:136523-136534. https://doi.org/10.1016/j.electacta.2020.13
6523


https://doi.org/10.1039/D0RA10257A
https://doi.org/10.1039/D0RA10257A
https://doi.org/10.1016/j.cjche.2024.01.014
https://doi.org/10.1016/j.cjche.2024.01.014
https://doi.org/10.1016/j.inoche.2024.112451
https://doi.org/10.1016/j.fuel.2023.128529
https://doi.org/10.1016/j.fuel.2023.128529
https://doi.org/10.1016/j.jaap.2022.105695
https://doi.org/10.1016/j.jaap.2022.105695
https://doi.org/10.1016/j.diamond.2025.112785
https://doi.org/10.1016/j.diamond.2025.112785
https://doi.org/10.1016/j.est.2025.116037
https://doi.org/10.1016/j.est.2025.116037
https://doi.org/10.1016/j.cej.2025.165145
https://doi.org/10.1016/j.cej.2025.165145
https://doi.org/10.1002/sstr.202400295
https://doi.org/10.1016/j.electacta.2017.04.038
https://doi.org/10.1016/j.electacta.2017.04.038
https://doi.org/10.1016/j.est.2020.101903
https://doi.org/10.1016/j.est.2020.101903
https://doi.org/10.1016/j.electacta.2020.137575
https://doi.org/10.1016/j.electacta.2020.137575
https://doi.org/10.1016/j.electacta.2020.136523
https://doi.org/10.1016/j.electacta.2020.136523
https://doi.org/10.1016/j.indcrop.2022.115458
https://doi.org/10.1016/j.indcrop.2022.115458
https://doi.org/10.1039/d2nj01041k
https://doi.org/10.1016/j.mtsust.2024.100868
https://doi.org/10.1016/j.mtsust.2024.100868
https://doi.org/10.1016/j.matchemphys.2022.126188
https://doi.org/10.1016/j.matchemphys.2022.126188
https://doi.org/10.1016/j.cej.2021.131477
https://doi.org/10.1016/j.fuel.2023.130134
https://doi.org/10.1016/j.fuel.2023.130134
https://doi.org/10.1016/j.jcis.2021.03.025
https://doi.org/10.1016/j.jcis.2021.03.025
https://doi.org/10.1039/c8ta01186a
https://doi.org/10.1039/c8ta01186a
https://doi.org/10.1016/j.scitotenv.2018.07.423
https://doi.org/10.1016/j.jpowsour.2024.235436
https://doi.org/10.1016/j.jpowsour.2024.235436
https://doi.org/10.1016/j.cej.2024.157000
https://doi.org/10.1016/j.cej.2024.157000
https://doi.org/10.1016/j.materresbull.2025.113441
https://doi.org/10.1016/j.materresbull.2025.113441
https://doi.org/10.1016/j.colsurfa.2025.137773
https://doi.org/10.1016/j.fuel.2024.132096

Biomass Conversion and Biorefinery

(2026) 16:40

Page 130f 13 40

47.

48.

49.

50.

SI.

52.

53.

54.

55.

56.

Schalenbach M, Durmus YE, Tempel H, Kungl H, Eichel R-A
(2021) Double layer capacitances analysed with impedance
spectroscopy and cyclic voltammetry: validity and limits of the
constant phase element parameterization. Phys Chem Chem Phys
23:21097-21105. https://doi.org/10.1039/d1cp03381f

Zhang Y, Li X, Li Z, Yang F (2024) Evaluation of electrochemical
performance of supercapacitors from equivalent circuits through
cyclic voltammetry and galvanostatic charge/discharge. J Energy
Storage 86:111122—111130. https://doi.org/10.1016/j.est.2024.11
1122

Tsai WT, Ayestas R, Tsai CH, Lin YQ (2022) Preparation and
characterization of porous materials from pineapple peel at ele-
vated pyrolysis temperatures. Mater Basel 15:4686—4698. https:/
/doi.org/10.3390/mal5134686

Zhao Z, Wang Z, Yu Y, Hu Y (2023) Localized electron den-
sity regulation effect for promoting solid-liquid ion adsorption
to enhance areal capacitance of micro-supercapacitors. Small
19:2302489-2302500. https://doi.org/10.1002/sml1.202302489
Liang K, Chen Y, Wang S, Wang D, Wang W, Jia S, Mitsuzakic
N, Chen Z (2023) Peanut shell waste derived porous carbon for
high-performance supercapacitors. J Energy Storage 70:107947—
107958. https://doi.org/10.1016/j.est.2023.107947

Morad M, Mohamed S, AbouShahba R, Rashad M (2022) Prepa-
ration of perovskite-type ZnSnO3 nanoparticles and enhancing
their behavior as a positive electrode for supercapacitor applica-
tions. Bull Tabbin Inst Metall Stud (TIMS) 111:19-30. https://do
i.org/10.21608/tims.2022.158162.1004

Shandilya M, Kaur GA, Rai R (2021) Low temperature conse-
quence on structural and impedance properties of BST ceramics
via sol-hydrothermal method. Mater Chem Phys 263:124422—
124434, https://doi.org/10.1016/j.matchemphys.2021.124422
Chatterjee D, Naik KG, Vishnugopi BS, Mukherjee PP (2024)
Electrodeposition stability landscape for solid-solid interfaces.
Adv Sci Weinh 11:2307455-2307466. https://doi.org/10.1002/a
dvs.202307455

Li S, Xing T, Wang Y, Lu P, Kong W, Li S, Su X, Wei X (2021)
Pore structure regulation and electrochemical performance char-
acterization of activated carbon for supercapacitors. Front Energy
Res 9:680761-680773. https://doi.org/10.3389/fenrg.2021.680761
Zhang Y, Cai Y, Li T, Wang M, Chen X, Xu Y (2024) Synthe-
sis and electrochemical performance of biomass-derived porous
carbon materials for supercapacitors. J Mater Sci Mater Electron
35:116-128. https://doi.org/10.1007/s10854-024-11944-7

57.

58.

59.

60.

61.

62.

63.

Shrestha D (2024) Structural and electrochemical evaluation
of renewable carbons and their composites on different carbon-
ization temperatures for supercapacitor applications. Heliyon
10:€25628. https://doi.org/10.1016/j.heliyon.2024.e25628
Bejjanki D, Banothu P, Kumar VB, Kumar PS (2023) Biomass-
derived N-doped activated carbon from Eucalyptus Leaves as an
efficient supercapacitor electrode material. C. https://doi.org/10.3
390/c9010024

Tan Y, Xu Z, He L, Li H (2022) Three-dimensional high gra-
phitic porous biomass carbon from dandelion flower activated
by K2FeO4 for supercapacitor electrode. J Energy Storage
52:104889-104898. https://doi.org/10.1016/j.est.2022.104889
Hu S-C, Cheng J, Wang W-P, Sun G-T, Hu L-L, Zhu M-Q,
Huang X-H (2021) Structural changes and electrochemical
properties of lacquer wood activated carbon prepared by phos-
phoric acid-chemical activation for supercapacitor applications.
Renew Energy 177:82-94. https://doi.org/10.1016/j.renene.202
1.05.113

Liu R, Wen J, Song J, Xin G, Bao J, Gao J, Wang Y (2025) One-
step and low-temperature KOH-K2CO3 synergistic activation
of residual carbon from coal gasification slag for supercapacitor
electrode material. Ionics 31:3607-3618. https://doi.org/10.1007/
s11581-024-06044-9

Teymur YA, Giizel F, Inal 11G (2023) High surface area mesopo-
rous carbon from black cumin (Nigella sativa) processing indus-
try solid residues via single-stage K2CO3 assisted carbonization
method: production optimization, characterization and its some
water pollutants removal and supercapacitor performance. Dia-
mond Relat Mater 135:109815-109829. https://doi.org/10.1016/j
.diamond.2023.109815

Zeng F, Tan Z, Yang X, Wang X, Xu B (2024) N-self-doped hier-
archically porous carbon materials from waste coffee grounds for
symmetric supercapacitor. J] Mater Sci Mater Electron 35:885—
899. https://doi.org/10.1007/s10854-024-12643-z

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

@ Springer


https://doi.org/10.1016/j.heliyon.2024.e25628
https://doi.org/10.3390/c9010024
https://doi.org/10.3390/c9010024
https://doi.org/10.1016/j.est.2022.104889
https://doi.org/10.1016/j.renene.2021.05.113
https://doi.org/10.1016/j.renene.2021.05.113
https://doi.org/10.1007/s11581-024-06044-9
https://doi.org/10.1007/s11581-024-06044-9
https://doi.org/10.1016/j.diamond.2023.109815
https://doi.org/10.1016/j.diamond.2023.109815
https://doi.org/10.1007/s10854-024-12643-z
https://doi.org/10.1039/d1cp03381f
https://doi.org/10.1016/j.est.2024.111122
https://doi.org/10.1016/j.est.2024.111122
https://doi.org/10.3390/ma15134686
https://doi.org/10.3390/ma15134686
https://doi.org/10.1002/smll.202302489
https://doi.org/10.1016/j.est.2023.107947
https://doi.org/10.21608/tims.2022.158162.1004
https://doi.org/10.21608/tims.2022.158162.1004
https://doi.org/10.1016/j.matchemphys.2021.124422
https://doi.org/10.1002/advs.202307455
https://doi.org/10.1002/advs.202307455
https://doi.org/10.3389/fenrg.2021.680761
https://doi.org/10.1007/s10854-024-11944-7

	﻿Pore-engineered okra stem derived activated carbon with large surface area for high-performance supercapacitors
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Experimental section
	﻿2.1﻿ ﻿Materials
	﻿2.2﻿ ﻿Synthesis of okra stem-based carbon
	﻿2.3﻿ ﻿Structural measurements
	﻿2.4﻿ ﻿Electrochemical test

	﻿3﻿ ﻿Results and discussions
	﻿4﻿ ﻿Conclusion
	﻿References


